Embedded PLC
Hard Logic Solver
Instruction Sets

User’s Manual

FRECON Electric (Shenzhen) Co., Ltd.

Table of Contents

CHAPTER 1: INTRODUGCTION 1.t eee s se e ese e s e s e e e s eeeeseeseesrens 1
CHAPTER 2: CONTACTS oot eee e e e s s e s e s ee e e s ee s ee s e e ees e eeseeeeeeseens 5
CHAPTER 3: FUNCTION BLOCKS ... oo eee e e ese e e ese e s e s esse e s eeseesseessens 9
T L0 oottt e ettt ettt 12
0L oottt e e sttt ettt 14
T0.0 ettt e et e e ettt ettt 16
UCTR oo e e e e s e e e e e e et e e e e e e e e e ettt 18
DICTR oo e e e e e et e e et e et e et e ettt 20
AADD ..ottt ettt 22
AADDB ..ottt ettt 24
AADDLc... oottt 26
AADBL ..ottt ettt 28
FAADD ..o ettt e et e ettt 30
1] SO 32
1] 1= OO 34
1] OO 36
Y= =Y 38
FSUB oo e eee e e e e e e e st et e e e et et s et e et e et 40
VUL oot e e et e e et s et e et e ettt 42
IVIULB <. s e et e e e et e e e st e e et e st e et 44
IVIULM oo e e e et e s e e s e e e e s e e s e e st e et 46
IVILBIVL oo e e et e e e et e e et s et e et e ettt 48
IVIULL oo e e e e et e e s et e e et e st e ettt 50
IVILBL oo e e e e et e e e e e et e et e ettt 52
FIMIUL oo st e e e e et s et e e e e st e et e et 54
15 V225 56
15 1V OO 58
DIV oo e et e e et e e et e ettt 60
153V Y OO 62
15 1Y/ OO 64
15/ OO 66
=) AV 2O 68
ISR et ettt ettt e ettt e et r et r e et e e 70
FSQR et e e e e e e e e e et et et e ettt e ettt 72
R T oo e e e e e e et e e et e ettt et e ettt 74
TR oot e et et e e e e et Aottt ettt 76

T CM ettt ettt ettt ettt ettt ettt e 80
TSR ceoeeeeee et e ettt ettt ettt ettt ettt ettt r et 82
T RS oottt et e et e et e et e ettt ettt ettt ettt e e 84
TOXHG . oottt ee e s e e s s e et e e et e et ee s et st et ee e ee e 86
BLIIV oottt ees e ee e s s ee e s e s e e s s e s ee et s e e e e s e ettt ee e e s et ee et 88
PUSH ..ottt se e eseeeesees e s e ees e es s eees e s s es e es s s e s e st eessee s e e e e eeesee s es e e s ee s ee e ee s ees e er e 90
POP .ottt e et e et et s et e ettt ettt ettt ettt 93
AAND ..ottt ettt ettt et ettt et 95
0= OO 97
XOR ettt e e e e e e e et e e e et s ettt ettt e ettt e et s et et 99
(010 Y= OO OO 101
CIMPR ..ot e e s e e e e s e e e e e et e e e e st e et s e e e et e et eer st eerens 103
BROT v eeee et eeseeeeese e e eeseeesees e ee e es e ee s e e e e e s e e e ee s e st e e ee s e s ee e e st e et ee e e s et ee e 105
(0]] = OO 107
1= OO 109
SENS 1ottt et e et e ettt e ettt s et e e et er et 111
15100 JOTE OO 113
ENCO ettt e ettt e et e ettt 115
B>C oot ee ettt e ettt e ettt ettt 117
G B ettt ettt ettt 119
SSEG ettt ettt ettt et s et r et 121
PACK ..ottt e ettt ettt 124
= ettt ettt ettt e et 127
=1 oottt ettt ettt ettt ettt ettt 129
IMIP ettt ettt ettt 131
E O ettt ettt ettt ettt ettt et 133
ISR ettt ettt ettt ettt 134
SBR .ottt ettt ettt ettt et e ettt 137
RET oot ee et eeee e e e e et e et e e ettt ettt et ee et e e 138
FOR ...t e et ee et e e ettt e st e et ettt e e 139
NEXT oot ee et e e e et e e et ee e e e s e s ettt s e et et e ettt 141
CHAPTER 4: FLOW CONTROL INSTRUCTIONS «....vveiveveeeeeeeeeeseeeeseeeeeeesseseseeesseeeseesseesseesseeseens 142
EOP ettt ettt ettt et 142
SIKIP ettt ettt e et e et 143
IVICS oottt et e ettt ettt et e ettt e e 145
IVISE oottt ettt ettt e ettt ettt ettt 147
INTP oot e et e e s e st ee e e s e e e e e e e s e st ee e e e e ettt e e 148
INCP oot s e st e e e s et e e st ee et e ettt s et ee et e e 150
PADD ...ttt ettt e ettt et 152
DECP oottt ettt e ettt ettt ettt 154

MOV E ettt E et 158
RECIMP ekt ekttt h et 160
CHAPTER 5: SYSTEM RELATED INSTRUCTIONScooiiiiiiiiiie e 162
D1 = T PP PR PPPR PP 162
1] = PP PP PP PPPRPPPRY 164
DICMIP et 166
LI = L TP P PO PP PPPPPTPR 168
LIRS = TP T PO PP PP PPPTPR 170
TCIMP et 172
ST AT et 174
CHAPTER 6: OTHERS ...ttt ettt e 177
L0 N TP OP PP OPPPPPPPPUPRPPIS 177
CDMR LRt Rttt 179
CDIMWNV Lotttk h e h e Rt e Rt R e R et 182
o 5 PP P TP PP 185

FOREWORD

Embedded PLC series bring the high performance, application flexibility and hardware compatibility to the
Embedded PLC family of products. Ten contacts and abundant function blocks (also referred to as
instructions) are provided for application control programs using the Embedded PLC series. In this manual,
the usage for contacts and function blocks is described together with application examples.

Contact elements include:

(1) 4 F (A normally open contact, usually referred to as: “A contact”)
(2) 4/} (A normally closed contact, usually referred to as: “B contact”)
3 -()- (A normal coil)

(4) -(S)- (A set coil)

(5) -(R)- (A reset coil)

(6) -(1)- (A positive transitional coil)

(7) -()- (A negative transitional coil)

(8) -(M)- (A holding coil during power loss)

(9) -(SM)- (A holding set coil during power loss)

(10) -(RM)- (A holding reset coil during power loss)

Function blocks instructions include:

(1) Timers and counters:
Timers: T1.0, T0.1, T0.01,
Counters: UCTR, DCTR.

(2) Mathematical blocks:
Adders: ADD, ADDB, ADDL, ADBL, FADD,
Subtracts: SUB, SUBB, SUBL, SBBL, FSUB,
Multipliers: MUL, MULB, MULM, MUBM, MULL, MLBL, FMUL,
Dividers: DIV, DIVB, DIVM, DVBM, DIVL, DVBL, FDIV,
Square root: ISQR, FSQR.

(3) Register, Table, Array instructions:
Move: R->T, T->R, T->T, TXHG, BLKM, PACK,
Rotate/Shift: T_RS, BROT, ODSR,
Modify: MBIT,
Compare: T_CM, CMPR,
Search: T_SR,
Logic: AND, OR, XOR, COMP
Stack: PUSH, POP,
Sense: SENS,

Encoder, Decoder: ENCO, DECO, SSEG,
Convert: B->C, C->B, I->F, F->I.

(4) Flow control instructions:
Main program: EOP, SKIP, MCS, MSE, JMP, EQJ,
Subroutine: JSR, SBR, RET,
Loop: FOR, NEXT,
Pointer: INIP, INCP, DECP, PADD, PSUB.

(5) System related instructions:
System date: DGET, DSET, DCMP,
System time: TGET, TSET, TCMP,
System status: STAT.

(6) Others:
CAM
CDMR (CDM read)
CDMW (CDM write)
MOVE

Users are advised to become familiar with the binary operation (which can be found in any Digital Design
Textbook) and the characteristics for each contact element and function block before designing a control
application program. Please also be advised that the data and illustrations in this manual are not binding.
We reserve the right to modify our products in line with our policy of continuous product improvement.
Information in this manual is subject to change without notice and should not be treated as a commitment
by FRECON Electric (Shenzhen) Co., Ltd. FRECON assumes no responsibility for any errors that may
appear in this manual.

CHAPTER 1: INTRODUCTION

The basic concept required to use this manual and the elements (contacts , function blocks, and
instructions) in Embedded PLC is briefly described in this Chapter. In Section 1, the terminology and
numerical representation are described. The constituents of a function block are described in Section 2 and
the convention used to represent the function blocks is described in Section 3.

SECTION 1: Terminology and Numerical Representations:
BIT:

The basic unit of the binary system. The value of a bit is either 0 or 1. The abbreviation for bit is B,
such as B0, B1,etc.

NIBBLE:

A nibble is composed of four bits such as B3~B0. It can be used to represent decimal values ranging
from 0 to 9, or hexadecimal values ranging from O~F. The abbreviation for nibble is NB, such as NBO,

A byte is composed of eight bits (B7~B0) or two contiguous nibbles (NB1~NBO). It can be used to
represent hexadecimal values ranging from 00~FF. The abbreviation for byte is BY, such as BYO,

A word is composed of sixteen bits. It can be used to represent hexadecimal values ranging from
0000~FFFF or 0~65535 in the decimal system. The abbreviation for word is W, such as WO,
W1, etc. Since Embedded PLC is based on 16-bit microcomputer architecture, a word
occupies one register in the computer memory.

LONG WORD:

A long word is composed of two continuous words or 32 bits. It can be used to represent
hexadecimal values ranging from 00000000~FFFFFFFF, floating point numbers through special
convention, or decimal format ranging from 0~99999999. The abbreviation for long word is LW,
such as LWO, LWI, etc. A long word occupies two continuous registers in the computer
memory. The first register contains the most significant 16 bits (usually referred to as HIGH WORD),
the second register contains the least significant 16 bits (usually referred to as LOW WORD). A long
word is referenced by the address occupied by the High Word.

1

Floating Point Representation using a Long Word:

A long word (32 bits) can be used to represent a floating point number. The bit assignment is shown
in the following figure:

D3l il . b8 b7 bo
e i S
2_]_ 2_2 2—22 2—23 2—24
Eraction Sign bit Exponent
Fr S E
Formula: 1=(-1)3%x 2% x Fr

For example, assuming that the content of register 40130 is CO00h and register 40131 is 0042h; then for
an operation using floating point referencing register 40130 (40130 and 40131 actually), the value used is:

40130 40131
1100 0000 0000 0000 | 0000 0000 0100 0010

I=(-1)°x 2% x (2'+2%)=3

SECTION 2: Constituents of a Function Block

In Embedded PLC series, a function block is composed of four parts: Function Name, Input Control,
Operand and Function Output as shown in the following figure:

Where: 1.1y, I, 15 are Input controls
b —| TOP [O 2. 04, O,, Oz are Function outputs.
3. TOP, MIDDLE, BOTTOM stand for Top
I, —| MIDDLE — O node, middle node and bottom node.
NAME These three nodes are operands.
I; —| BOTTOM | O 4. NAME is the name of the function block.

Function Name:

The function name is an abbreviation or acronym of the operation performed by the function block. Two to
four characters are used to represent the function. A complete list of the function block names may be
found in the FOREWORD of this manual.

Input Control:

There must be one input control for each function block. This input control (usually referred to as I,) is
used to determine whether to execute this function block or not. For some function blocks, there are two
additional input controls (I, and I3). They are used to determine the execution mode of the function block.

Function Output:

There must be a function output control for each function block. This output (usually referred to as O,) is
used to drive a coil or used as an input control for the next function block. For some function blocks, there
are two additional output controls (O, and O3), they are also used to represent the results of the execution.

Operands:

Operands, as the name implies, are the objects of operations. An operand whose content is not altered by

the operation is called a SOURCE. An operand that is used to store the result of the operation is called a

DESTINATION. Operands can be Input contact, Output coil or register in memory. For Embedded PLC,
the designations of operands are listed in the following table:

Table 1.1: Operands
Initial NAME DESCRIPTION
0 Output Coll Use Output coil as an operand. Since 1 word = 16 bits, thus the
(Discrete output) number assignment of the operand must be a multiple of 16 plus 1.
For example: 00001, 00017, 00033.
1 Input contact Use Input contact as an operand. The number assignment of the
(Discrete input) operand must be a multiple of 16 plus 1. For example: 10001,
10017, 10033.

3 Input register Use Input register as an operand. For example:30001, 30003.

4 Holding register Use Holding register as an operand. For example:40001, 40003.

C Constant For some function blocks, a constant can be defined as an operand:
and during control program execution, the value of the constant is
readily available rather then fetching from register memory. For
example: #00001, #0020h. The former is a decimal constant, and
the latter is a hexadecimal constant.

P Pointer For some function blocks, a pointer can be defined as an operand,
and this pointer can be used for indirect addressing pointing to 0-,
1-, 3-, 4-type variable. For example: PO001

L Label For paired instructions (such as FOR and NEXT), their operands

are label, and the label for each instruction must be the same in
order for program to be executed correctly. For example: LO0OL.

Currently, there are three models of Embedded-PLC controllers. The memory size and the CPU capability
are different between models to meet different control requirements. Therefore, the numbers of spaces

available for operands are also different. The available ranges for operands for each model are listed in the
following table.

Table 1.2: Available operand ranges for different models of the Embedded PLC series controller

OPERAND

Embedded PLC

0

00001~09984

10001~12048

30001~30512

40001~49999

L1~L150

0~65535

o0 (rF [~ |w |-

PO~P15

CHAPTER 2: CONTACTS
Contact elements are the most fundamental elements in Ladder Programs. Familiarization with their
characteristics and usage is highly recommended.

(1) 4 } Normally Open Contact:
This type of contact is usually referred to as “A Contact”. When a contact is energized, the said “A

contact” becomes conductive; and vice versa.

[EXAMPLE] | ()
10001 00001
| ()
00001 00002
[Meaning]

When input contact 10001 is ’"ON’, coil 00001 is energized, and “A contact” 00001 becomes
conductive, thus, coil 00002 is energized.

(2) 4/ F Normally Closed Contact:
This type of contact is usually referred to as “B Contact”. When a contact is not energized, the said

“B contact” becomes conductive; and vice versa.

[EXAMPLE] | /| ()
10001 00001
/| ()
00001 00002
[Meaning]

When input contact 10001 is ’OFF’, coil 00001 is energized, and “B contact” 00001 becomes
non-conductive, thus, coil 00002 is not energized.

(3) -()- Output Caoil:
This output coil reflects the state of the elements connected to it. If the element is in the ‘ON” state,
then this coil is said to be energized; and vice versa.

[EXAMPLE) | || ()

10001 00001
[Meaning) When input contact 10001 is *ON’, then output coil 00001 is ‘ON’; When input contact

10001 is *OFF”’, then output coil 00001 is ‘OFF’

[Timing diagram]
Input(10001)

Output(00001)

(4) -(S)- SetCaoll:
When the element connected to this coil is ‘ON’, then this set coil is set to ‘ON’ and remains in that

“ON’ state until the “RESET coil” with the same reference number is energized.

[EXAMPLE]l | (S)
‘ 10001 00001

[Meaning]
When contact 10001 is ’ON’, the set coil 00001 is ‘ON’ and remains ‘ON’ no matter how contact
10001 is changed.

[Timing diagram]
Input(10001) —— am

Output(00001) ——

(5) -(R)- Reset coil:
When the element connected to this coil is ‘ON’, then this set coil is set to ‘OFF’ and remains in that

“OFF’ state until the “SET coil” with the same reference number is energized.

[EXAMPLE] || (S)
10001 00001
— ——®
10002 00001
[Meaning]

When input contact 10001 is ’ON’, output coil 00001is set to ’'ON’ and remains in that state. Until
input contact 10001 is ‘OFF’ and input contact 10002 is ’'ON’, then output coil 00001is set to ‘OFF’

and remains ‘OFF’.

[Timing diagram]

Input(10001) —— —

Input(10002)

Output(00001 y——

(6) -(T)- Positive Transitional Pulse Output Coil:
When the element connected to this output has an ’OFF’[I’ON” transition, a pulse(COFF’[I’ON’) is
generated for this output.

[EXAMPLE]| || 0
‘ 10001 00001

[Meaning]
When input contact 1000 receives a transition ’OFF’[I’ON’, then a pulse ’OFF’[I’ON’ is generated for
output coil 00001. The width of the pulse is 1 scan time.

[Timing diagram]
Input(10001) T 1

Output(00001) —

1 2" 3¢ 4™ 5" (scan)

(7) -(3)- Negative Transitional Pulse Output Coil:
When the element connected to this output has an ’ON’[]’OFF’ transition, a pulse(’OFF.I’ON’) is
generated for this output.

[EXAMPLE] | b)
| 10001 00001

[Meaning])
When input contact 10001 receives a transition ’'ON’[J’OFF’, then a pulse ’OFF’[]’ON’ is generated
for output coil 00001. The width of the pulse is 1 scan time.

[Timing diagram]
Input(10001) = J

Output(00001)

1St 2nd 3rd 4th 5th (Scan)

(8) -(M)- Holding Coil during power loss:
This output coil reflects the state of the elements connected to it. If the element is in the ‘ON” state,
then this coil is said to be energized; and vice versa. The last state of the coil is maintained after
system power is shut down and turned on again.

(9) -(SM)- Holding Set Coil during power loss:
When the element connected to this coil is ‘ON’, then this coil is set to ‘ON’ and remains in that
“ON’ state until the “RESET coil” with the same reference number is energized. The last state of the
coil is maintained after system power is shut down and turned on again.

(10) -(RM)- Holding Reset Coil during power loss:
When the element connected to this coil is ‘ON’, then this coil is set to ‘OFF’ and remains in that
“OFF’ state until the “SET coil” with the same reference number is energized. The last state of the
coil is maintained after system power is shut down and turned on again.

CHAPTER 3: FUNCTION BLOCKS

[}
— @ —0 NAME
NAME Full Name of Function Block IR e
Level trigger Edge trigger
Symbol: Operand:
L
I, — TOP — O TOP
MIDDLE NODE
I, — - O, MIDDLE
NAME NODE
I;] BOTTOM| O3 BOTTOM
7' NODE
®O~65535L
— O [
Description :
[

Node description:

TOP : A []
MIDDLE :
BOTTOM :

Input Control:

Function Output:

O,

0, :
Os:

10

The template for the description of a function block is divided into ten areas ({~[J). The meaning for each
area is described as follows:

0 NAME:
NAME is an abbreviation or acronym for the operation performed by the function block. Two to four
characters are used to represent the function. When displaying the ladder program on screen, the
name of the function block is also displayed.

0 Full Name of Function Block:
The operation of the function block is given briefly in this area.

0 NAME:
This area is provided for easy reference to function blocks.

O0Trigger mode:
The entry here is used to indicate the trigger mode of the function block. For “Level trigger” mode,
when I1 is HIGH, then the function block is executed. For “Edge trigger” mode, when there is an
OFF to ON transition, then the function block is executed. For edge-trigger function blocks, a “ " ”
mark is prefixed to the name of the function block in the PP programming environment.

0 Symbol:
The symbol of the function block as used in this manual is displayed in the ladder diagram.

0 Operands
Operands available for the function block have a circle “O “ marked in the table.

0 Function block description:
A brief description of the major function of the function block together with its input control, function
output and result of the execution is given in this area.

O Node description:
The usage of each node , whether it is a Source or a Destination, is given in this area.

O Input Control:
The condition(l,) required for the function block to be executed is described here. The execution

mode (I, and/or I3) is also described here.

0 Function Output:
The results of the execution (O, O, Os) are given in this area.

11

T1.0

T1.0

1.0 SECOND TIMER

SYMBOL.:

i — TOP — O

T1.0

I, —/ BOTTOM — O,

OPERANDS:
011|134
TOP @)
BOTTOM ©)
®0~65535

Description:

Timer increments by one at intervals of one second. When the accumulated time (stored in the BOTTOM
node) reaches the timer preset (stored in TOP node), the timer stops. Input control can be used to start,
stop and reset the timer. The timer status (whether the elapsed time has reached the preset time) can be
detected by examining the function output.

Node description:
TOP: Preset value for timer.

Input Control:

Function Output:

=0, if accumulated value <
0O,: Complement of O,

BOTTOM: Accumulated value since timer started.

I, : Execution control. When I, = 1, timer starts; I, = 0, timer stops.
I, : Reset control, when I, =0, the accumulated value is cleared to zero.

0, =1, if accumulated value = preset value.

preset value.

12

[EXAMPLE]

| — #00005——()

[DESCRIPTION]

This example shows a five-second timer. The decomposition of actions are:

1. 40012 is 0, then 00040="OFF’ and 00041="ON’ at the beginning.

2. When input control 10012 is ’ON’, register 40012 increments by one for every one second.
3. When the content of register 40012 =5 (as defined in the top node), the function output:

00040 = ‘ON’, 00041 = ‘OFF".

4. Since 00040 = ‘ON’, I, changes to "OFF’, and clears register 40012 to ’0’.
5. Since 40012 = 0, then 00040 = "OFF’, 00041 = ‘ON’, register 40012 continues incrementing,

10012 T1.0 00040
|\ 40012 ()
00040 00041

and the execution continues from STEP 3.

13

T0.1

T0.1 0.1 SECOND TIMER I

SYMBOL: OPERANDS:
0O[1|3|4|C|P]|L
I, — TOP — O TOP O|0|®
T0.1
I, —/ BOTTOM — O, BOTTOM @)
®0~65535
Description:

Timer increments by one at intervals of 0.1 second. When the accumulated time (stored in the BOTTOM
node) reaches the timer preset (stored in TOP node), the timer stops. Input control can be used to start,
stop and reset the timer. The timer status (whether the elapsed time has reached the preset time) can be
detected by examining the function output.

Node description:
TOP: Preset value for timer.
BOTTOM: Accumulated value since timer started.

Input Control:

I, : Execution control. When I, = 1, timer starts; I, = 0, timer stops.
I, : Reset control, when I, =0, the accumulated value is cleared to zero.

Function Output:

0, =1, if accumulated value = preset value.
=0, if accumulated value < preset value.

0O,: Complement of O,

14

[EXAMPLE]

L] #00050 ()
10012 | To.1 00040
— "\ | 40012 ()
00040 00041

[DESCRIPTION]

This example shows a five-second timer. The decomposition of actions are:

1.40012 is 0, then 00040="OFF’ and 00041="ON’ at the beginning.
2. When input control 10012 is ’ON’, register 40012 increments by one for every one second.

3. When the content of register 40012 = 50 (as defined in the top node), the function output:
00040 = ‘ON’, 00041 = ‘OFF".

4. Since 00040 = ‘ON’, I, changes to "OFF’, and clears register 40012 to ’0’.

5. Since 40012 = 0, then 00040 = "OFF’, 00041 = ‘ON’, register 40012 continues incrementing,
and the execution continues from STEP 3.

15

T0.01

T0.01 0.01 SECOND TIMER I

SYMBOL: OPERANDS:
0O[1|3|4|C|P]|L
I, | TOP — 0O TOP O|0|®
T0.01
I, —/ BOTTOM|— O, BOTTOM @)
®0~65535
Description:

Timer increments by one at intervals of 0.01 second. When the accumulated time (stored in the BOTTOM
node) reaches the timer preset (stored in TOP node), the timer stops. Input control can be used to start,
stop and reset the timer. The timer status (whether the elapsed time has reached the preset time) can be
detected by examining the function output.

Node description:
TOP: Preset value for timer.
BOTTOM: Accumulated value since timer started.

Input Control:

I, : Execution control. When I, = 1, timer starts; I, = 0, timer stops.
I, : Reset control, when I, =0, the accumulated value is cleared to zero.

Function Output:

0, =1, if accumulated value = preset value.
=0, if accumulated value < preset value.

0O,: Complement of O,

16

[EXAMPLE]

| — #00500——)

[DESCRIPTION]

This example shows a five-second timer. The decomposition of actions are:

1. 40012 is 0, then 00040 = OFF’ and 00041 = ON’ at the beginning.
2. When input control 10012 is ’ON’, register 40012 increments by one for every 0.01 second.
3. When the content of register 40012 = 500 (as defined in the top node), the function output:

00040 = ‘ON’, 00041 = ‘OFF".

4. Since 00040 = ‘ON’, I, changes to "OFF’, and clears register 40012 to ’0’.
5. Since 40012 = 0, then 00040 = "OFF’, register 40012 continues incrementing, and the

10012 T.01 00040
|\ 40012 ()
00040 00041

execution continues from STEP 3.

17

UCTR

UCTR UP COUNTER t L

SYMBOL: OPERANDS:
0O[1|3|4|C|P]|L
b, | TOP — O TOP O|0|®
UCTR
I, — BOTTOM — O, BOTTOM @)
®0~65535
Description:

This counter counts the pulses presented at 1, from 0 to a preset value. Input control can be used to start,
stop and reset the counter. The counter status (whether the accumulated value has reached the preset
value) can be detected by examining the function output.

Node description:
TOP: Preset value for counter.
BOTTOM: Accumulated value since counter started.

Input Control:

I, : Counter control. When I; receives an ’OFF’[]’ON’ transition, The counter is incremented by 1.
I, : Reset control. When |, = 0, the accumulated value is cleared to zero.

Function Output:

0, =1, if accumulated value=preset value.
=0, if accumulated value < preset value.
0,: Complement of O,

18

[EXAMPLE]

L | —{ #00100 ()
10001 | UCTR 00001
LI\ 40001
00001

[DESCRIPTION]

When contact 10001 receives an OFF to ON transition, the accumulated value of the counter
(40001) is incremented by 1. When the accumulated value reaches 100, coil 00001 is energized.
When normal-close contact 00001 opens, the counter is reset.

19

DCTR

DCTR DOWN COUNTER L

SYMBOL: OPERANDS:
0O[1|3|4|C|P]|L
I, | TOP — Oy TOP O|0|®
DCTR
I, — BOTTOM|— O, BOTTOM @)
®0~65535
Description:

This counter counts the pulses presented at 1, from a preset value to 0. Input control can be used to start,
stop and reset the counter. The counter status (whether the accumulated value has reached 0) can be
detected by examining the function output.

Node description:
TOP: Preset value for counter.
BOTTOM: Accumulated value since counter started.

Input Control:

I, : Counter control. When I; receives an ’OFF’[I’ON’ transition, the counter is decreased by 1.
I, : Reset control. When I, = 0, the accumulated value is set to preset value.

Function Output:

0O, =1, if accumulated value=0.
=0, if accumulated value > 0.
0,: Complement of O,

20

[EXAMPLE]

-1 |—{#00100 ()
10001 |DCTR 00001
L _|-{40001
00001

[DESCRIPTION]

When contact 10001 receives an OFF to ON transition, the accumulated value of the counter
(40001) is decreased by 1. When the accumulated value reaches 0, coil 00001 is energized. When

normal-close contact 00001opens, the counter is reset, and the value in counter (40001) is set to
100.

21

ADD

ADD FOUR DIGIT DECIMAL ADDER e
SYMBOL.: OPERANDS:
01134 [C|P]|L
i — TOP — O TOP O|0|®|O
MIDDLE
I, — ADD — O, MIDDLE O|0|®|O
I; — BOTTOM — O3 BOTTOM ©) ©)
®0~9999

word +word—word (Decimal)

Description:
The decimal values stored in the top and middle nodes are added and the sum is stored in the bottom node.

Sum = (top + middle + I5) MOD 10000.
Input control (1) is used to determine whether this function block is to be executed or not.
Function output (O3) may be used to determine whether or not an overflow has occurred.

Node Description:

TOP: Summand, must be < 10000.
MIDDLE: Addend, must be < 10000.
BOTTOM:1.(top + middle + I3) MOD 10000
2.1f error (ref. to O,) occurred, the content of the bottom node remains unchanged.
Input Control:

l,: When [| (f |)ispresented, the function block is executed.
I,: errorin
I5: carry in
Function Output:
O:1=1
Oz =error output (O, is ‘1’ if I is “1° or the value of either top node or middle node is over 9999)
O; : overflow/carry
=1, Sum >9999
=0, Sum =9999

22

[EXAMPLE]

[
|| 40021 |—
10025 | 40027 |
ADD
40021 #0001
40020
ADD
40020

[DESCRIPTION]

When the contact 10025 has an “OFF—ON”, the content of register 40021 is added to the
content of register 40027 and the sum is stored back to register (40021). Since the sum is larger
than 9999, therefore, the second adder is energized.

00000 <«—
40020 00001 \+00001
40021 09700 \ 00001

40027 00500

200
09700 Controls 2™ adder

+00500 1
10200
10200

//

23

ADDB

ADDB FOUR DIGIT HEXADECIMAL ADDER t
SYMBOL.: OPERANDS
0]1]1|3|4|C|P
b, =+ TOP +— O TOP O|0|®|O
MIDDLE
I, — ADDB |- O, MIDDLE O|0|®|O
I; — BOTTOM [— O; BOTTOM O @)
®0~65535
word +word—word (hexadecimal)
Description:

The values (hexadecimal) stored in the top and middle nodes are added and the sum is stored in the bottom

node. Sum = (top + middle) MOD 65536.
Input control (I;) is used to determine whether this function block is to be executed or not.
Function output (O3) may be used to determine whether or not an overflow has occurred.

Node Description:

TOP: Summand, must be <65535.
MIDDLE: Addend, must be <65535.

BOTTOM: Sum < 65535. The carry, if any, is ignored.
Input Control:

I:: When (_t) is presented, the function block is executed.

Function Output:

01:|1
02:0

O; : overflow

=1, Sum
=0, Sum

>65535
=65535

24

[EXAMPLE]

| L
10025 | 40021

40027 ——

ADDB

40021 #0001
40020
ADDB
40020

[DESCRIPTION]

When contact 10025 is energized, the content of register 40021 is added to the content of
register 40027 and the sum is stored back to register 40021. Since the sum is larger than 65535,
therefore, the second adder is energized.

00000 <«—

40020 00001 \+00001
40021 00010 \ 00001

00010 Controls 2™ adder

+65530 1
65540

65540:ﬁ00000wm+oooo4

40027 65530

//

25

ADDL

ADDL EIGHT DIGIT DECIMAL ADDER] £
SYMBOL.: OPERANDS:
0[/1|3]4|C|P|L
I, — TOP +— O TOP O O
MIDDLE
I, — ADDL — O MIDDLE O|l®|O
I; — BOTTOM — O3 BOTTOM O O
® 0~9999

Lword + Lword — Lword (Decimal)

Description:
The values (long word, decimal) stored in the top and middle nodes are added and the sum is stored in the

bottom node. Sum = MOD (top + middle + 13) MOD 100000000.
Input control (1) is used to determine whether this function block is to be executed or not.
Function output (O3) may be used to determine whether or not an overflow has occurred.

Node Description:

TOP: Summand, must be <100000000.
MIDDLE: Addend, must be <100000000.
BOTTOM :1.(top + middle + I5) MOD 10000000.
2.1f error (refer to O,) occurred, the content of the bottom node remains unchanged.
Input Control:

l: When | | (f |)ispresented, the function block is executed.
I,: error in
I5: carry in
Function Output:
O:=1y
O, =error output (Oz is ‘17 if I, is “1° or the value of either top node or middle node is over 99999999.)
O; : overflow/carry
=1, Sum >99999999
=0, Sum =99999999

26

[EXAMPLE]

| —] 40021 |—

10025 | 40027 |
ADDL
40030 ——

[DESCRIPTION]

When contact 10025 is “ON’, the content of registers 40027/40028 is added to the content of

registers 40021/40022. The sum is stored in registers 40030/40031. Since the sum is less then
99999999, thus, O; : ON, O, = 03= OFF.

40021 0000

40022 9999

40027 0000 /\‘ 9999
40028 9999 + 9999
40029 19998
40030 0001 >/

40031 9998

27

ADBL

ADBL EIGHT DIGIT HEXADECIMAL ADDER t
SYMBOL.: OPERANDS
01134 [C|P]|L
lhb, |/ TOP | — O TOP ©) ©)
MIDDLE
I, — ADBL -0, MIDDLE Oo|0®|O
I; — BOTTOM — O3 BOTTOM ©) ©)
®0~65535

Lword + Lword— Lword (Hexadecimal)

Description:
The values (long word, hexadecimal) stored in the top and middle nodes are added and the sum is stored in

the bottom node. Sum = MOD(top+middle) FFFFFFFF.
Input control (1) is used to determine whether this function block is to be executed or not.
Function output (O3) may be used to determine whether or not an overflow has occurred.

Node Description:

TOP: Summand, must be < 100000000 yey.
MIDDLE: Addend, must be < 100000000 jey.

BOTTOM: Sum < 100000000 1. The carry , if any, is ignored.
Input Control:

I:: When (|) is presented, the function block is executed.

Function Output:

O:=1

0,=0

O; : overflow
=1, Sum>4294967295 (=1000000004ey)
=0, Sum=4294967295 (=1000000004¢y)

28

[EXAMPLE]

| —] 40021 —
10025 | 40027
ADBL
40030 ——

[DESCRIPTION]

When contact 10025 is “ON’, the content of registers 40027 & 40028 is added to the content of
registers 40021/40022. The sum is stored in the registers 40030 & 40031,

40021 00000
40022 50000

40027 00000 \ 50000
40028 50000 ~ +50000

40029 00000
40030 00001

40031 34464 =1x65536 + 34464

29

FADD

FADD FLOATING POINT ADDER] £
SYMBOL.: OPERANDS:
0[1[3|]4|C|P|L
l,— TOP |— O TOP o o
MIDDLE
I, — FADD +—O0O, MIDDLE o|0]|O
I; | BOTTOM| O3 BOTTOM O O
[10~65535

float + float — float

Description:
The values (floating point) stored in the top and middle nodes are added and the sum is stored in the
bottom node.

Input control (1) is used to determine whether this function block is to be executed or not.

Node Description:
TOP: Summand.
MIDDLE: Addend.
BOTTOM: Sum.
Input Control:

I:: When (1 |)ispresented, the function block is executed.

Function Output:

01:|1
02:0
03:0

30

[EXAMPLE]

| | 40010 ——
10025 | 40020
FADD
40030 [

[DESCRIPTION]

When contact 10025 is “ON’, the content of registers 40010/40011 is added to the content of
registers 40020/40021; the sum is stored in registers 40030/40031; and O; : ON, O, = 03 = OFF.

40010 BBS80 T (=3000)
40011 | 005C

40020 9C40 > (=5000)
40021 005D

40030 FAQ0O —> (=8000)
40031 005D j

31

SUB

SUB FOUR DIGIT DECIMAL SUBTRACTOR t
SYMBOL.: OPERANDS:
0[1[3|]4|C|P|L
MIDDLE
I, SUB — O, MIDDLE O|0O|l®|O
I; | BOTTOM| O3 BOTTOM O O
®0~9999

word —word—word (Decimal)

Description:
The value stored in the middle node is subtracted from the top node, and the difference is stored in the

bottom node.

Input control (1) is used to determine whether this function block is to be executed or not.
Function output may be used to determine the relationship between minuend and subtrahend (>, =, <).

Node Description:

TOP: Minuend, must be <10000.
MIDDLE: Subtrahend, must be <10000.
BOTTOM: Difference.

Input Control:

I:: When (f |)ispresented, the function block is executed.

Function Output:

0, = 1, if difference > 0 (Top node > Middle node).
0, = 1, if difference = 0 (Top node = Middle node).
03 =1, if difference < 0 (Top node < Middle node).

32

[EXAMPLE]

| —] 40001}—()
00080 00011
40002}—()

SUB| 00012

40003 |—()

00013

[DESCRIPTION]

Assume that register (40001)=9000(10), and (40002)=500(10). when contact 00080 is ’ON’, the
subtraction: (40003)=(40001) — (40002) is performed. Since the minuend is larger than the

subtrahend, thus coil 00011 is ‘ON’, 00012 is ‘OFF’ and 00013 is ‘OFF’.

40001 | 09000 —— 9000
40002 | 00500 ——— — 0500

40003 | 08500 j&—— 8500

33

SUBB

SUBB FOUR DIGIT HEXADECIMAL It il
SUBTRACTOR
SYMBOL.: OPERANDS:
- 01134 [C|P]|L
lL— TOP | — O TOP Oo|l®|O
MIDDLE
l,— SuBB — O, MIDDLE O|0|®|O
5] BOTTOM [O; BOTTOM ©) ©)
®0~65535

word —word—word (Binary)

Description:
The value stored in the middle node is subtracted from the top node, and the difference is stored in the

bottom node.

Input control (1) is used to determine whether this function block is to be executed or not.
Function output may be used to determine the relationship between minuend and subtrahend (> ~ =~ <).

Node Description:

TOP: Minuend
MIDDLE: Subtrahend
BOTTOM: Difference.

Input Control:

I:: When 1L (ﬂ) is presented, the function block is executed.

Function Output:

0O, =1, if difference > 0.
0, =1, if difference = 0.
05 =1, if difference < 0.

34

[EXAMPLE]

- 40001 —)
00080 00011

40002 —()
SUBB | 00012

40003 ——()
00013

[DESCRIPTION]

Assume that register (40001)=9000(10), and (40002)=9000(10). when contact 00080 is ’ON’, the
subtraction: (40003)=(40001) — (40002) is performed. Since the minuend is equal to the

subtrahend, thus coil 00012 is ‘ON’.

40001 | 09000 F—— 9000
40002 | 09000 ——— — 9000

40003 | 00000 j=——— 0000

35

SUBL

SUBL EIGHT DIGIT DECIMAL SUBTRACTOR t
SYMBOL.: OPERANDS:
0[1[3|]4|C|P|L
MIDDLE
I, — SUBL |— O, MIDDLE o|0]|O
Is; | BOTTOM[O3 BOTTOM O O
[10~65535

Lword — Lword—Lword (Decimal)

Description:
The value stored in the middle node is subtracted from the top node, and the difference is stored in the

bottom node.

Input control (1) is used to determine whether this function block is to be executed or not.
Function output may be used to determine the relationship between minuend and subtrahend (>, =, <).

Node Description:

TOP: Minuend, must be <=99999999.
MIDDLE: Subtrahend, must be <=99999999.
BOTTOM: Difference.

Input Control:

I:: When (|) is presented, the function block is executed.

Function Output:

0O, = 1, if difference > 0.
0O, =1, if difference = 0.
05 =1, if difference < 0.

36

[EXAMPLE]

- 40010 —()
00080 00011

40020 —()
SUBL | 00012

40030 —()
00013

[DESCRIPTION]

Assume that long word(40010)=999910) and long word(40020)=9999,0, when contact 00080is
‘ON’, the operation: long word(40030)=long word(40010) — long word(40020) is performed.

Since the minuend is equal to the subtrahend, thus coil 00012 is ‘ON’.

40010 | 0000
40011 | 9999

40020 | 0000
40021 | 9999

40030 | 0000
40031 | 0000

37

SBBL

SBBL EIGHT DIGIT HEXADECIMAL t

SUBTRACTOR
SYMBOL.: OPERANDS:
0[1[3]|4 P|lL
MIDDLE

P SBBL — O, MIDDLE o|0]|O

I3 BOTTOM[O3 BOTTOM O O
[10~65535

Lword — Lword— Lword(Binary)

Description:
The value stored in the middle node is subtracted from the top node, and the difference is stored in the

bottom node.

Input control (1) is used to determine whether this function block is to be executed or not.
Function output may be used to determine the relationship between minuend and subtrahend (>, =, <).

Node Description:
TOP: Minuend.
MIDDLE: Subtrahend.
BOTTOM: Difference .
Input Control:

I:: When JL (ﬂ) is presented, the function block is executed.

Function Output:

0O, =1, if difference > 0.
0, =1, if difference = 0.
05 =1, if difference < 0.

38

[EXAMPLE]

L 140010 —()
00080 00011

40020 —()
SBBL | 00012

40030 ——()
00013

[DESCRIPTION]

Assume that long word(40010)= 65536(10) and long word(40020)= 6553610). when contact 00080
is ‘ON’, the operation: long word(40030)=long word(40010) — long word(40020) is performed.

Since the minuend is equal to the subtrahend, thus coil 00012 is ‘ON”.

40010 | 0001
40011 | 0000

40020 | 0001
40021 | 0000

40030 | 0000
40031 | 0000

39

FSUB

FSUB FLOATING POINT SUBTRACTOR t
SYMBOL.: OPERANDS:
0[1[3|]4|C|P|L
MIDDLE
I, — FSUB |— O, MIDDLE o|0]|O
I; —|BOTTOM [O3 BOTTOM O O
[10~65535

Float — float— float

Description:
The value stored in the middle node is subtracted from the top node, and the difference is stored in the

bottom node.

Input control (1) is used to determine whether this function block is to be executed or not.
Function output may be used to determine the relationship between minuend and subtrahend (>, =, <).

Node Description:

TOP: Minuend.
MIDDLE: Subtrahend.
BOTTOM: Difference.
Input Control:

I:: When (1 |) ispresented, the function block is executed.

Function Output:

0O, = 1, if difference > 0.
0O, =1, if difference = 0.
05 =1, if difference < 0.

40

[EXAMPLE]

| |—{ 40010 — O,
10025
40020 —— O,
FSUB
40030 [—— O,

[DESCRIPTION]
When contact 10025 is “ON’, the content of registers 40020/40021 is subtracted from the

content of registers 40010/40011; the difference is stored in registers 40030/40031. Since the
minuend is greater than the subtrahend, thus O; : ON, O, = O3 = OFF.

40010 9C40 j_' (=5000)
40011 005D

40020 BB80]_’ (=3000)
40021 005C

40030 FAQ00 — (=2000)
40031 005B j

41

MUL FOUR DIGIT DECIMAL MULTIPLIER t
SYMBOL.: OPERANDS:
01134 [C|P]|L
L — TOP —0O TOP OO ©)
MIDDLE
l,— MUL — O, MIDDLE O|0|0 |0
Is; |BOTTOM [O; BOTTOM ©) ©)
®0~9999

word x word—Lword (Decimal)

Description:
The value in the top node is multiplied by the value in the middle node, and the product is stored in the

bottom node(long word).
Input control (1) is used to determine whether this function block is to be executed or not.
Function output (O3) may be used to determine whether or not an overflow has occurred.

Node Description:
TOP: Multiplicand, must be <=9999.
MIDDLE: Multiplier, must be <=9999.
BOTTOM :1.Product, Long word.
2.1f error (refer to O,) occurred, the content of the bottom node remains unchanged.

Input Control:
I:: When (f |)is presented, the function block is executed.
I,: error in

Function Output:

01 = |1

0O, =1 (If the value of either top node or middle node is greater than 9999).
0;:0

42

MUL

[EXAMPLE]

| | 40005}— O,

10007
40006 |— O,
MUL
40036 [O3

[DESCRIPTION]

Let register(40005)=2500 and (40006)=1100. When contact 10007 is ‘ON’, the operation:
long word (40036)=(40005)x(40006) is performed.

40005 [2500 » 2500x1100 = 2750000

40006 | 1100 The product is stored in registers 40036/40037.
40036 [0275

40037 [0000

43

MULB

MULB FOUR DIGIT HEXADECIMAL MULTIPLIER t

SYMBOL.: OPERANDS:
0[1[3|]4|C|P|L
MIDDLE
I, — MULB | — O, MIDDLE O|0O|l®|O
I;] BOTTOM[O3 BOTTOM O O
®0~65535

word xword—Lword (Binary)

Description:
The value in the top node is multiplied by the value in the middle node, and the product is stored in the

bottom node(long word).
Input control (1) is used to determine whether this function block is to be executed or not.

Node Description:

TOP: Multiplicand.

MIDDLE: Multiplier.

BOTTOM: Product, Long word.

Input Control:

l: When | | (f |)ispresented, the function block is executed.

Function Output:
O:=1
0,=0
0;=0

44

[EXAMPLE]

L | }—{ 40005 |—
10007
40006 |
MULB
40036 [

[DESCRIPTION]

Let register(40005)=2500 and (40006)=1100. When contact 10007 is ‘ON’, the operation:
long word (40036)=(40005)x(40006) is performed.

40005 [2500 » 2500x1100 = 2750000
40006 | 1100 The product is stored in registers 40036/40037.

40036 [0029 hex)
40037 [_F630¢mex

45

MULM

MULM FOUR DIGIT DECIMAL MULTIPLIER t
SYMBOL.: OPERANDS:
01134 [C|P]|L
L, — TOP | —0O TOP OO ©)
MIDDLE
l, —|/ MULM —O;, MIDDLE O|0|0 |0
I;] BOTTOM| O3 BOTTOM ©) ©)
®0~9999

word x word—word (Decimal)

Description:
The value in the top node is multiplied by the value in the middle node, and the product is stored in the

bottom node(long word).
Input control (1) is used to determine whether this function block is to be executed or not.
Function output (O3) may be used to determine whether or not an overflow has occurred .

Node Description:

TOP: Multiplicand (<= 9999).
MIDDLE: Multiplier(<=9999).
BOTTOM:1.Product.
2.1f error (refer to O,) occurred, the content of the bottom node remains unchanged.
Input Control:

I:: When (1 1) is presented, the function block is executed.
I,: error in.
Function Output:

O:=1
0, =1 (If the value of either top node or middle node is greater than 9999, or I, = 1)
O3 : Overflow

=1 > Product =10000

=0 » Product < 10000

46

[EXAMPLE]

-1 {40005 |—
10007
40006 |
MULM
40007 [

[DESCRIPTION]

Let register(40005)=25 and (40006)=100. When contact 10007 is ‘ON’, the operation:
(40036)=(40005)x(40006) is performed.

40005 | 0025 » 25x100 = 2500

40006 | 0100 The product is stored in register 40007.
40007 [2500

47

MLBM |FOURDIGIT HEXADECIMAL MULTIPLIER t

SYMBOL.: OPERANDS:
0[1[3|]4|C|P|L
MIDDLE
I, | MLBM — O, MIDDLE O|0O|l®|O
I; | BOTTOM — Os; BOTTOM O O
®0~65535

word x word—word (Binary)

Description:
The value in the top node is multiplied by the value in the middle node, and the product is stored in the

bottom node(long word).
Input control (1) is used to determine whether this function block is to be executed or not.
Function output (O3) may be used to determine whether or not an overflow has occurred .

MLBM

Node Description:

TOP: Multiplicand.

MIDDLE: Multiplier.

BOTTOM: Product.

Input Control:

l: When | | (f |)ispresented, the function block is executed.

Function Output:
O:=h
0,=0
O3 : Overflow
=1 > Product =65536
=0 » Product <65536

48

[EXAMPLE]

-1 {40005 |—
10007
40006 |
MLBM
40007 [

[DESCRIPTION]

Let register(40005)=9999 and (40006)=2. When contact 10007 is ‘ON’, the operation:
(40036)=(40005)x(40006) is performed.

40005 | 9999 » 9999x2 = 19998

40006 | 0002 The product is stored in register 40007.
40007 | 19998

49

MULL

MULL EIGHT DIGIT DECIMAL MULTIPLIER t
SYMBOL: OPERANDS:
o|1]3|4]|c|P|L
,— TOP | O TOP ol 1o
MIDDLE
l, — MULL — O, MIDDLE o|®|0
l, | BOTTOM — O BOTTOM o| |o
®0~65535

Lword x Lword—Lword (Decimal)

Description:
The value in the top node is multiplied by the value in the middle node, and the product is stored in the

bottom node. All operands are long words.
Input control (1) is used to determine whether this function block is to be executed or not.
Function output (O3) may be used to determine whether or not an overflow has occurred .

Node Description:

TOP: Multiplicand, must be <= 99999999.
MIDDLE: Multiplier, must be <=99999999.
BOTTOM :1. Product.
2.1f error (refer to O,) occurred, the content of the bottom node remains unchanged.
Input Control:

l: When | | (f |)ispresented, the function block is executed.
I,: error in
Function Output:
O:=1y
0, =1 (If the value of either top node or middle node is greater than 99999999, or I, = 1).
O3 : Overflow
=1 > Product =100000000
=0 » Product < 100000000

50

[EXAMPLE]

-1 40010 |—
10007
40020 |
MULL
40030 [

[DESCRIPTION]

Let register(40010/40011)=12345 and (40020/40021)=11. When contact 10007 is ‘ON’, the
operation: long word(40030)=long word(40010)xlong word(40020) is performed.

40010 | 0001
40011 | 2345
40020 | 0000
40021 | 0011
40030 | 0013
40031 | 5795

DECIMAL

51

MLBL

MLBL EIGHT DIGIT HEXADECIMAL
MULTIPLIER L T
SYMBIL: OPERANDS:
0[1[3|]4|C|P|L
MIDDLE

I, — MLBL — O MIDDLE O|l®|O

I; | BOTTOM [O3 BOTTOM O O
®0~65535

Lword x Lword—Lword (Binary)

Description:
The value in the top node is multiplied by the value in the middle node, and the product is stored in the

bottom node. All operands are long words.
Input control (I;) is used to determine whether this function block is to be executed or not.
Function output (O3) may be used to determine whether or not an overflow has occurred .

Node Description:

TOP: Multiplicand.
MIDDLE: Multiplier.
BOTTOM: Product.
Input Control:

I:: When (|) is presented, the function block is executed.

Function Output:

O:=1;

0,=0

O3 : Overflow
=1, Product >= 4294967296 (=100000000.)
=0, Product< 4294967296 (=100000000)

52

[EXAMPLE]

-1 40010 |—
10007
40020 |
MLBL
40030 [

[DESCRIPTION]

Let register(40010/40011)=65535 and (40020/40021)=11. When contact 10007 is ‘ON’, the
operation: long word(40030)=long word(40010)xlong word(40020) is performed.

40010 | 0000 || r 40010 | 0000
20011 | 65535 || - 40011 | FFFF
40020 | 0000 || 40020 | 0000
20021 | o120 | b 40021 | o006E
40030 | 0109 40030 | 006D
40031 | 65426 40031 | EF92

DECIMAL HEXADECIMAL

53

FMUL

FMUL FLOATING POINT MULTIPLIER t
SYMBOL: OPERANDS:
o|1(3|4|c|P|L
,— TOP | O TOP ol 1o
MIDDLE
I, — FMUL — O, MIDDLE o|®|0
l, | BOTTOM — O BOTTOM o| |o
®0~65535

float x float—float

Description:
The value stored in the top node is multiplied by the value in the middle node, and the product is stored in

the bottom node. All operands are long words.
Input control (1) is used to determine whether this function block is to be executed or not.

Node Description:

TOP: Multiplicand.

MIDDLE: Multiplier.

BOTTOM: Product.

Input Control:

l: When | | (f [)ispresented, the function block is executed.

Function Output:
O:=ly
0,=0
05=0

54

[EXAMPLE]

' ' 40010 |——
10025 40020
FMUL
40030 —

[DESCRIPTION]

Let register (40010/40011)=5000 and (40020/40021)=2. When contact 10025 is ‘ON’, the
operation: long word(40030)=Ilong word(40010)xlong word(40020) is performed. Function

Output: O; = ON, O, = O3 = OFF.

40010 | 9c40

j—* (=5000)
40011 | 005D
40020 | 8000

j > (=2

| —)
40021 | 0052
40030 | 9c40

j_, (=10000)
40031 | O0OSE

55

DIV

DIV FOUR DIGIT DECIMAL DIVIDER(2) t
SYMBOL.: OPERANDS:
0/1|3]4|C|P|L
MIDDLE
I, — DIV — O MIDDLE O|0O|®|O
I; | BOTTOM | Os BOTTOM O O
®0~9999

Lword+word—word (Decimal)

Description:
The value stored in the top node is divided by the value in the middle node, and the result is stored in the

bottom node.

Input control (1) is used to determine whether this function block is to be executed or not.

Function outputs can be used to determine whether the function block has been executed, divisor is zero
and overflow.

Node Description:

TOP: Constant dividend, must be <=9999; else the LONG WORD value is used.
MIDDLE: Divisor, must be <= 9999
BOTTOM: 1.Result of Division. The quotient is stored in the first word. Depending on the input
control, the remainder or the first four digits after decimal point of quotient are
stored in the second word.
2.1f error occurred, the content of the bottom node remains unchanged.
Input Control:

I:: When (1 |) ispresented, the function block is executed.
I, = 0, the second word of the bottom node is used to store the remainder.

= 1, the second word of the bottom node is used to store the first four digits after the decimal point.
I : errorin

Function Output:

O:=1

O, =1, if overflow, i.e. quotient >9999

Os (error output)= 1 (1.1f the value of either top node or middle node is greater than 9999 or
2.1f divisor = 0)

56

[EXAMPLE]

_|

10005

(DESCRIPTION)

40090 ——()
00035

40130 —()
DIV 00065

40053 ——()
00095

Let long word(40090)=9999 and (40130) =10. When contact 10005 is energized, I,and I, = ‘ON’.
The quotient (=999) is stored in register 40053. Since I, = ‘ON’, thus the first four digits (=9000) are
stored in register 40054.

40053 0999
40054 9000
40090 0000
40091 9999
40130 0010

Integer portion of the quotient
First four digits of the fractional portion of the quotient

Dividend 9999+10 = 999.9000

Divisor

57

DIVB

DIVB EIGHT DIGIT HEXADECIMAL DIVIDER(1) t

SYMBOL.: OPERANDS:
0[1[3|]4|C|P|L
MIDDLE
P DIVB — O, MIDDLE O|0O|l®|O
I; —|BOTTOM [Os BOTTOM O O
®0~65535

Lword+word—word (Binary)

Description:
The value stored in the top node is divided by the value in the middle node, and the result is stored in the

bottom node.

Input control (1) is used to determine whether this function block is to be executed or not.

Function outputs can be used to determine whether the function block has been executed, divisor is zero
and overflow.

Node Description:

TOP: Dividend, (long word)
MIDDLE: Divisor
BOTTOM: 1.Result of Division. The quotient is stored in the first word. Depending on the input
control, the remainder or the first four digits after decimal point of quotient are stored
in the second word.
2.1f error occurred, the content of the bottom node remains unchanged.
Input Control:

I:: When (1 1) is presented, the function block is executed.
I, =0, the second word of the bottom node is used to store the remainder.
=1, the second word of the bottom node is used to store the first four digits after the decimal point.

Function Output:

01 = |1
O, =1, if overflow, i.e. quotient > 65535
Os (error output)= 1, if divisor = 0.

58

[EXAMPLE]

- — 40090 —)
10005 00035

40130 —()
DIVB | 00065

40053 —()
00095

[DESCRIPTION]

Let long word(40090)=65535 and (40130) =12. When contact 10005 is energized, I, = ‘ON’,
and the quotient (=5461) is stored in register 40053. Since I, = ‘OFF’, the remainder (=0003) is
stored in register 40054.

40053 5461 Quotient
40054 0003 Remainder 65535+12 = 5461, remainder 3

40090 0000 Dividend
40091 65535

40130 0012 Divisor

59

DIVM

DIVM FOUR DIGIT DECIMAL DIVIDER(2)] £
SYMBOL.: OPERANDS:
0[1[3|]4|C|P|L
MIDDLE
I, —| DIVM | — O, MIDDLE O|0O|l®|O
I; | BOTTOM [O3 BOTTOM O O
®0~9999

word+=word—word (Decimal)

Description:
The value stored in the top node is divided by the value in the middle node, and the result is stored in the

bottom node.

Input control (1) is used to determine whether this function block is to be executed or not.

Function outputs can be used to determine whether the function block has been executed, divisor is zero
and overflow.

Node Description:

TOP: Dividend, must be <= 9999.

MIDDLE: Divisor, must be <= 9999.

BOTTOM :1.Result of Division. The quotient is stored in the first word. Depending on the input
control, the remainder or the first four digits after decimal point of quotient are stored
in the second word.

2.1f error occurred, the content of the bottom node remains unchanged.
Input Control:

I:: When JL (ﬂ) is presented, the function block is executed.
I, =0, the second word of the bottom node is used to store the remainder.

=1, the second word of the bottom node is used to store the first four digits after the decimal point.
Is =errorin

Function Output:

O:=1
0,=0
Os (error output)= 1 (1. If divisor =0 or
2. If the value of either top node or middle node is greater than 9999.)

60

[EXAMPLE]

- 40090 ——()
10005 00035

40130 —()
DIVM| 00065

40053 ——()
00095

[DESCRIPTION]

Let long word(40090)=9999 and (40130) =10. When contact 10005 is energized, 1,and
I, = ‘ON’. The quotient (=999) is stored in register 40053. Since I, = ‘ON’, thus the first four
digits (=9000) are stored in register 40054.
9999+10 = 999.9000
40053 0999 Quotient
40054 9000 First four digits of the fractional portion of the quotient

40090 9999 Dividend

40130 0010 Divisor

61

DVBM

DVBM FOUR DIGIT HEXADECIMAL DIVIDER t
SYMBOL.: OPERANDS:
0[1[3|]4|C|P|L
MIDDLE
I, —| DVBM |— O MIDDLE O|0O|l®|O
I; | BOTTOM [O3 BOTTOM O O
®0~65535

word+word—word (Binary)

Description:
The value stored in the top node is divided by the value in the middle node, and the result is stored in the

bottom node.

Input control (I;) is used to determine whether this function block is to be executed or not.

Function outputs can be used to determine whether the function block has been executed, divisor is zero
and overflow.

Node Description:

TOP: Dividend.

MIDDLE: Divisor.

BOTTOM: 1.Result of Division. The quotient is stored in the first word. Depending on the input
control, the remainder or the first four digits after decimal point of quotient are stored
in the second word.

2.1f error occurred, the content of the bottom node remain unchanged.
Input Control:

I:: When (|) is presented, the function block is executed.
I, =0, the second word of the bottom node is used to store the remainder.
=1, the second word of the bottom node is used to store the first four digits after the decimal point.

Function Output:

01: |1
02: 0
Os (error output)= 1, if divisor = 0.

62

[EXAMPLE]

L | 40090 —()
10005 00035

40130 ——()
DVBM | 00065

40053 ——()
00095

[DESCRIPTION]

Let long word (40090)=65535 and (40130) =12. When contact 10005 is energized, |, = ‘ON’,
and the quotient (=5461) is stored in register 40053. Since I, = ‘OFF’, the remainder (=0003) is
stored in register 40054.

40053 5461 Quotient
40054 0003 Remainder 65535+12 = 5461, remainder 3

40090 | 65535 Dividend

40130 0012 Divisor

63

DIVL

DIVL EIGHT DIGIT DECIMAL DIVIDER(2)] £
SYMBOL.: OPERANDS:
0[1[3|]4|C|P|L
MIDDLE
I, — DIVL — O, MIDDLE o|0]|O
I; | BOTTOM| O3 BOTTOM O O
[10~65535

Lword-+Lword—Lword (Decimal)

Description:
The value stored in the top node is divided by the value in the middle node, and the result is stored in the

bottom node. Input control (1,) is used to determine whether this function block is to be executed or not.
Function outputs can be used to determine whether the function block has been executed, divisor is zero
and overflow.

Node Description:

TOP: Dividend, must be <= 99999999.

MIDDLE: Divisor, must be <= 99999999.

BOTTOM:1.Result of Division. The quotient is stored in the first and second words. Depending on the
input control, the remainder or the first eight digits after decimal point of quotient are stored
in the third and fourth words.

2.1f error occurred, the content of the bottom node remains unchanged.
Input Control:

I:: When (f |)is presented, the function block is executed.
I, =0, the third and the fourth words of the bottom node is used to store the remainder.
=1, the third and the fourth words of the bottom node is used to store the first eight digits after the

decimal point.
I : errorin

Function Output:

O:=1
0,=0
Os (error output)= 1 (1. If divisor =0 or
2. If the value of either top node or middle node is greater than 99999999)

64

[EXAMPLE]

| 40090 —()
10005 00035

40130 —()
DIVL | 00065

40053 ——()
00095

[DESCRIPTION]

Let long word(40090)=99999999 and long word(40130) =11. When contact 10005 is
energized, I, = ‘ON’, and the quotient (=9090910) is stored in the long word 40053. Since I, =
‘OFF’, the remainder (=0001) is stored in register 40055 and 40056.

40053 0909]—' Quotient(=9090910)
40054 0910

40055 0000 Remainder(=0000)
40056 0001

40090 9999 > Dividend(=99999999)
40091 9999 [

40130 0000 » Divisor(=11)

40131 0011 [

65

DVBL

DVBL EIGHT DIGIT HEXADECIMAL DIVIDER t
SYMBOL.: OPERANDS:
0[1[3|]4|C|P|L
MIDDLE
I, — DVBL — O, MIDDLE O|l®|O
I; |BOTTOM [O3 BOTTOM O O
®0~65535

Lword+Lword—Lword

Description:
The value stored in the top node is divided by the value in the middle node, and the result is stored in the

bottom node.

Input control (1) is used to determine whether this function block is to be executed or not.

Function outputs can be used to determine whether the function block has been executed, divisor is zero
and overflow.

Node Description:

TOP: Dividend.

MIDDLE: Divisor.

BOTTOM: Result of Division. The quotient is stored in the first and second words. Depending on the
input control, the remainder or the eight digits after decimal point of quotient are stored in
the third and fourth words.

Input Control:

l: When | [(f |)is presented, the function block is executed.
I, =0, the third and the fourth words of the bottom node is used to store the remainder.
=1, the third and the fourth words of the bottom node is used to store the first eight digits after the
decimal point.

Function Output:

01: |1
02: 0
O5;=1, if divisor = 0.

66

[EXAMPLE]

| {40090 ——()
10005 00035

40130 ——()
DVBL| 00065

40053 —()
00095

[DESCRIPTION]

Let long word(40090)=305419896 and long word(40130) =1100. When contact 10005 is
energized, I, = ‘ON’, and the quotient (=277654) is stored in long word 40053. Since I, = ‘OFF’,
the remainder (=0000) is stored in register 40055 and 40056.

40053 0004]—' Quotient(=277654)
40054 3C96

40055 0000 Remainder(=0000)
40056 0000

40090 1234 > Dividend(=305419896)
40091 5678 |-

40130 0000 » divisor(=1100)

40131 044C L.

67

FDIV

EDIV FLOATING POING DIVIDER] £
SYMBOL.: OPERANDS:
0[1[3|]4|C|P|L
I, —| TOP — O TOP O|l®|O
MIDDLE
I, — FDIV +— O, MIDDLE O|l®|O
I; | BOTTOM | O3 BOTTOM O O
®0~65535

float+float—float

Description:
The value stored in the top node is divided by the value in the middle node, and the result is stored in the

bottom node.

Input control (1) is used to determine whether this function block is to be executed or not.

Function outputs can be used to determine whether the function block has been executed, divisor is zero
and overflow.

Node Description:

TOP: Dividend.
MIDDLE: Divisor.
BOTTOM: Quotient.
Input Control:

I:: When (1 |) is presented, the function block is executed.

Function Output:

01:|1
02: 0
O5;=1, if divisor = 0.

68

[EXAMPLE]

| }—{ 40010 ——

10025 {40020 |
FDIV
40030 ——

[DESCRIPTION]

Let register(40010/40011)=5000 and (40020/40021)=2. When contact 10025 1s ‘ON’, the
operation: long word(40030)=Ilong word(40010)+long word(40020) is performed. Function

Output: O; =0ON, O, = O3 = OFF.

40010 9C40 j_' (=5000)
40011 005D

40020 | 8000]—-—*(:2)
40021 | 0052

40030 9C40 — (=2500)
40031 005C j

69

ISQR

|SQR SQUARE ROOT OF AN INTEGER e
SYMBOL: OPERANDS:
,— TOP O TOP
ISQR BOTTOM

I, 7] BOTTOM| O,

Description:

The square root of the value stored in the top node is found and stored in the bottom node. The result of
the square root operation is truncated to integer. Input control (11) is used to determine whether this
function block is to be executed or not. Function outputs can be used to determine whether the function

block has been executed.

Node Description:

TOP: An integer whose square root is desired.

BOTTOM: Square root.

Input Control:

I:: When (1 1) is presented, the function block is executed.

Function Output:

01:|1
02:0

70

[EXAMPLE]

40120

— ISQR

40130

[DESCRIPTION]

Let (40120)=400. When this rung is scanned, the square root of the values stored in the top
node are stored in the bottom node.

40120 0400 [——— squareroot —

¥

40130 0020

71

FSOR

FSQR SQUARE ROOT OF A FLOATING POINT . o
NUMBER
SYMBOL.: OPERANDS:
0[1[3|]4|C|P|L
FSQR BOTTOM O O

I, " |BOTTOM [O,

Description:
The square root of the value stored in the top node is found and stored in the bottom node. Input control

(1) is used to determine whether this function block is to be executed or not. Function outputs can be
used to determine whether the function block has been executed.

Node Description:

TOP: A floating point number whose square root is desired.
BOTTOM: Square root.

Input Control:

I:: When (1 1) ispresented, the function block is executed.

Function Output:

01:|1
02:0

72

[EXAMPLE]

40120

—{ FSQR

40130

[DESCRIPTION]

Let (40120/40121)=2500. When this rung is scanned, the square root of the values stored in the
top node are stored in the bottom node (40130/40131).

40120 | 9C40 > (=2500)
40121 | 005C | |

40130 | €800 > (=50)
40131 | 0056 | |

73

R->T

R_>T MOVE FROM REGISTER TO TABLE 1t

SYMBOL: OPERANDS:
0O[1|3|4|C|P|L
Lb— TOP — O TOP O|O0|O|0O @)
MIDDLE
b —+4 R>T — O, MIDDLE @) @) @)
I; | BOTTOM | Os BOTTOM O)
®1~255

Description:

The content of the top node is filled onto the table defined in the following address(es) by the middle node.
Table length is defined in the bottom node.

Input control (1;) is used to determine whether this function block is to be executed or not.

Input control (I,) is used to define the action mode of the INDEX.

Input control (13) is used to clear the INDEX.

Function outputs can be used to determine whether the function block has been executed and whether the
INDEX exceeded the table length.

Node Description:

TOP: Source register.

MIDDLE: Reference register. First word defined as INDEX into the target table. If the value of the
INDEX is equal to zero, then the INDEX is pointing to the first entry in the target table. The target table
starts with the second word.

BOTTOM: Table Length. If the INDEX value is greater than or equal to this number, table movement is
prohibited disregarding the state of 1.

Input Control:

l: When | | (f |)ispresented, the function block is executed.
I,: INDEX control.
=0, INDEX is incremented by one after each execution.
=1, INDEX remains unchanged.
I5: Reset INDEX.
=1, clear INDEX to 0.
Function Output:

01: |1
O,: INDEX indicator.
=1, INDEX = table length, the INDEX is pointing to an address beyond table limit.

03:0

74

[EXAMPLE]

L1 40120
10005
4 40100 —)
R>T| 00001
- | | #00010
00001

[DESCRIPTION]

When contact 10005 is energized, the content of input register 40120 is copied to table registers
(40101~40110), one register per scan. During the action INDEX(40100) increments by one after
each scan.

When INDEX (in 40100) reaches preset value of BOTTOM node (#00010), then coil 00001 is
energized and the content of register 40100 is cleared. The movement continues until contact
10005 is OFF.

40101+0<40100 | 00000 0000+1 00001 | 40100
INDEX[™> 40101 | 00002 [< 00555 | 40101
40100=0 40102 | 00003 INDEX |— 00003 | 40102

40103 40100-=1 40103
40104 40104
40105 40105
40106 40106
40107 40107
40108 40108
40109 40109
40110 40110
40120 [00555 00555 40120

BEFORE AFTER

75

T->R

T_>R MOVE FROM TABLE TO REGISTER L

SYMBOL: OPERANDS:
0O[1|3|4|C|P]|L
,L— TOP — O TOP O|O0|O|0O @)
MIDDLE
b— T>R — O, MIDDLE @) @) @)
I; | BOTTOM|[O3 BOTTOM O)
®1~255

Description:

The content of the top node is moved to the following address(es) defined by the middle node. Table
length is defined in the bottom node.

Input control (1,) is used to determine whether this function block is to be executed or not.

Input control (I,) is used to define the action mode of the INDEX.

Input control (13) is used to clear the INDEX.

Function outputs can be used to determine whether the function block has been executed and whether the
INDEX exceeded the table length.

Node Description:

TOP: Source table.

MIDDLE: Source INDEX is defined at the first word. If the value of the INDEX is equal to zero, then the
INDEX is pointing to the first entry in the source table. The target register is in the second word.
BOTTOM: Table Length. If the INDEX value is greater than or equal to this number, table movement is
prohibited disregarding the state of 1.

Input Control:

l;: When | [(ﬂ) is presented, the function block is executed.
I,: INDEX control.
=0, INDEX is incremented by one after each execution.
=1, INDEX remains unchanged.
I5: Reset INDEX.
=1, clear INDEX to 0.
Function Output:

01: |1
O,: INDEX indicator.
=1, INDEX = table length, the INDEX is pointing to an address beyond table limit.

03:0

76

[EXAMPLE]

o

10054

|
00129

40101
40200 ——()
T->R | 00129

#00050

[DESCRIPTION]

When contact 10054 is energized, source data pointed to by INDEX(40101) is moved to 40201
(the next address defined by the middle node). For every scan of the PLC controller, data
movement occurs once until the INDEX reaches the end of table(#00050). Then Coil 00129 is
energized and the INDEX is cleared. In this manner, data movement can be repeated. The
following is the state after the nth scan since INDEX reset to 0.

40200
40201

BEFORE

40101
40102
40103

40101+n

40150

00001

00002

00003

00109

0
1 INDEX
2 40200

n+1

00150

Table

77

49 End of table

v

00109

40200
40201

T->T

- MOVE FROM ONE TABLE TO ANOTHER
T->T @) OM O O ANO =
TABLE
SYMBOL.: OPERANDS:
0(1|3|4|C|P|L
I, — TOP — Oy TOP O|O0|0|0O @)
MIDDLE
b— T->T — O, MIDDLE @) O O
I; | BOTTOM | Os BOTTOM @
®1~255
Description:

The content of the top node is moved to the following address(es) defined by the middle node. Table
length is defined in the bottom node. Input control (1,) is used to determine whether this function block is
to be executed or not. Input control (1) is used to define the action mode of the INDEX. Input control
(13) is used to clear the INDEX. Function outputs can be used to determine whether the function block
has been executed and whether the INDEX exceeded the table length.

Node Description:

TOP: Source table.

MIDDLE: INDEX is defined at the first word. If the value of the INDEX is equal to zero, then the
INDEX is pointing to the first entry in the target register. The target table starts at the second word.
BOTTOM: Table Length. If the INDEX value is greater than or equal to this number, table movement is
prohibited disregarding the state of 1.

Input Control:

l,: When | | (f |)ispresented, the function block is executed.
I,: INDEX control.
=0, INDEX is incremented by one after each execution.
=1, INDEX remains unchanged.
I5: Reset INDEX.
=1, clear INDEX to 0.
Function Output:

01: |1
O,: INDEX indicator.
=1, INDEX = table length, the INDEX is pointing to an address beyond table limit.

03:0

78

[EXAMPLE]

| — 30001
10001
— 40100 —()
T->T | 00001
L | | #00006
00001

[DESCRIPTION]

When contact 10001 is energized and after six scan cycles, data stored in registers 30001~30006
are moved to registers 40101~40106. When the INDEX in the middle node = 6, the coil 00001 is
energized and the INDEX is cleared. Data movement continues until contact 10001 is OFF.

SOURCE INDEX 40100 TARGET
[:;:] 40100 | 00000
30001 | 00111 40101 | 00111
30002 | 00222 40102 | 00000
30003 | 00333 40103
30004 | 00444 40104
30005 | 00555 40105
30006 | 00666 40106
BEFORE
INDEX
[0] 40100 | 00006
30001 | 00111 40101 | 00111
30002 | 00222 40102 | 00222
30003 | 00333 40103 | 00333
30004 | 00444 40104 | 00444
30005 | 00555 40105 | 00555
30006 | 00666 40106 | 00666

After 6 scans

79

T CM

T CM TABLE COMPARE 1] f L
SYMBOL.: OPERANDS:
0[/1|3]4|C|P|L
I, —| TOP — O TOP O|0|O0|O O
MIDDLE
I, — T CM — O MIDDLE O O
I; | BOTTOM | O3 BOTTOM ®
®1~255

Description:
This function compares the tables pointed by the top and middle node. If a difference is found between the

corresponding table locations, then that the index of that element is stored in the middle node. Table length
is in the bottom node.

Input control (1) is used to determine whether this function block is to be executed or not.

Input control (I,) is used to define the action mode of the INDEX.

Function outputs can be used to determine whether the function block has been executed and whether
those tables are different or not.

Node Description:

TOP: Starting address of the first table.
MIDDLE: INDEX is defined in the first word. The starting address of the second table is defined in the
second word. The INDEX has two uses. First, it is used to indicate the index of the difference data after
the last comparison. Second, it is used to indicate the next comparison will start below this index.
BOTTOM: Table length.
Input Control:
l.: When | | (f [)ispresented, the function block is executed. Based on the state of I, comparison
continues until a difference is found or the end of table is reached. When execution terminates, the INDEX
points to the address where the difference is found or zero (if no difference).
I,: Action mode of INDEX.

=0, start comparison from the next address pointed to by the INDEX.

=1, start comparison from the first entry of the table.
Function Output:
O:=1
O, =1, if tables are different.
O3 is the complement of O,

80

[EXAMPLE]

[DESCRIPTION]

40211

40450
T CM
#00010

—()
00001

—()

00002

When contact 10005 is energized, the table starting from 40211 is compared against the table
starting from 40451. Since the 6" entries in both tables are different, then register 40450=00006 ,
and coil 00001="ON".

40211
40212
40213
40214
40215
40216
40217
40218
40219
40220

INDEX before execution
40050 |I| (clear index before starting compare)

00111

00222

00333

00000

00000

00000

00000

00000

00000

00999

40450
40451
40452
40453
40454
40455
40456
40457
40458
40459
40460

40450

6

INDEX after execution

81

00006

00111

00222

00333

00000

00000

00666

00000

00000

00000

00999

00000 # 00666
02=0N
O3 = OFF

T SR

T SR TABLE SEARCH t

SYMBOL: OPERANDS:
0O[1|3|4|C|P]|L
I, — TOP — Oy TOP O|O0|O|0O @)
MIDDLE
I, TSR — O MIDDLE @) @)
I; | BOTTOM| O3 BOTTOM O]
®1~255

Description:

Reference value is defined in the second word of the middle node. Search starts from the table defined in
the top node. If the same value as the reference is found, then this function stops and the INDEX where
the same value was found is stored in the middle node. Table length is defined in the bottom node.

Input control (1;) is used to determine whether this function block is to be executed or not.

Input control (I,) is used to define the action mode of the INDEX.

Function outputs can be used to determine whether the function block has been executed and whether a
same value with the reference has been found.

Node Description:

TOP: Starting address of the table.

MIDDLE: INDEX is defined in the first word. The reference value is defined in the second word of the
middle node. The INDEX has two uses. First, it is used to indicate the index of the same data after the last
search. Second, it is used to indicate the next search will start below this index.

BOTTOM: Table length.

Input Control:

l.: When | | (_f [)is presented, the function block is executed. Based on the state of I, search
continues until a match is found or the end of the table is reached. When execution terminates, the INDEX
points to the address where the difference is found.
I,: Action mode of INDEX.

=0, start search from the next address pointed to by the INDEX.

=1, start search from the first entry of the table.
Function Output:

01 = |1
0O, =1, if tables are different.

82

[EXAMPLE]

|] 40211

10005 | 40206 ——()
T SR 00010
#00010

[DESCRIPTION]

When 11=1, search starts from the table starting from 40211. INDEX(40206) reset to O at the
beginning. If a table entry is found to be the same as the value of 40207 (next address defined in
the middle node), in this example, (40216)=00666=(40207), then 00006 is stored in the middle
node, and coil 00010="ON".

A

40206 [00006
40207 [00666

A

INDEX
40211 00111 |(<«—1
40212 [00222 | «—— 2
40213 [00333 [«— 3
40214 [00000 [«— 4
40215 00000 [«—5
40216 [00666 | «—6 — |
40217 [00000 | «— 7

40218 [00000 | «— 8

40219 [00000 | «— 9

40220 [00999 | «— 10

83

T RS

T RS TABLE ROTATE/SHIFT | L L

SYMBOL: OPERANDS:
0O[1|3|4|C|P]|L
L— TOP — 0O TOP O|O0|O|0O @)
MIDDLE
I, T RS — O MIDDLE @) @)
I; | BOTTOM| O3 BOTTOM O)
®1~255

Description:

Using register as a unit, this function performs table rotate or shift. The table is defined in the top node.
Table length is defined in the bottom node.

Input control (1) is used to determine whether this function block is to be executed or not.

Input control (I,) is used to define the direction.

Input control (I3) is used to define the mode.

Function outputs can be used to determine whether the function block has been executed.

Node Description:

TOP: Starting address of the table. SHIFT MODE
MIDDLE: Table after processing. Whn Wn-1 W2 w1
BOTTOM :Table length. LEFT [}—1 F [}— }—0

Input Control:

I,: Execution control. Wn Wn-1 W2 w1
When | [(ﬂ) is presented, RIGHT 0—{ FH—{ | L]
the function block is executed.
I,: Direction.

=0, Left.

=1, Right. ROTATE MODE
I5: mode. Whn Wn-1 W2 W1

=0, Shift. eer T F—1 1

=1, Rotate.
Function Output: -
0= 1 RIGHT r'&'_'lm—_lhl -
0,=0
05;=0

84

[EXAMPLE 1]

| | 40010

10001 [40020 | ()
T RS | 00010
#00003

[DESCRIPTION]
When contact 10001 receives a transition from ‘OFF’ to ‘ON’ and I,=I3=1, then a right rotate
operation is performed.

40010 | 11111
40011 | 22222

40012 | 33333 [4 il !
» 33333 > 22222 » 11111
11111 33333 22222

A

40020 | 22222
40021 [33333
40022 | 11111

A

A

[EXAMPLE 2]
| —{ 40010
10001 | 40010 |—()
T RS 00010
#00003
[DESCRIPTION]
BEFORE AFTER
40010 | 1111 40010 | 2222
40011 | 2222 40011 | 3333

40012 3333 40012 1111

85

TXHG

TXHG TABLE EXCHANGE)
SYMBOL: OPERANDS:
0O[1|3|4|C|P]|L
MIDDLE
I, |/ TXHG |— O, MIDDLE @) @) @)
I; | BOTTOM| O3 BOTTOM O)
®1~255

Description:

Entries exchange between two tables. Tables are defined in the top and middle nodes. Table length is
defined in the bottom node.

Input control (1) is used to determine whether this function block is to be executed or not.
Function outputs can be used to determine whether the function block has been executed.

Node Description:

TOP: The first table.

MIDDLE: The second table.

BOTTOM: Table length.

Input Control:

l,: When | | (1 |)ispresented, the function block is executed.

Function Output:
0=l

0,=0

05;=0

86

[EXAMPLE]

| | 40010
10001 | 40020
TXHG
#00005

[DESCRIPTION]

When 10001 receives a transition from ‘OFF’ to ‘ON’, then the entries of the two tables as
defined in the top and middle nodes are swapped.

40010 | 01111 40020 | 06666
40011 | 02222 40021 | Q7777
40012 [03333 40022 | 08888
40013 [04444 40023 | 09999
40014 [05555 40024 | 00000
BEFORE
40010 [06666 40020 | 01111
40011 [_OQ7777 40021 | 02222
40012 [08888 40022 | 03333
40013 [09999 40023 | 04444
40014 [00000 40024 | 05555

87

BLKM

BLKl\/I MEMORY BLOCK MOVE 1 1

SYMBOL: OPERANDS:
0O[1|3|4|C|P]|L
Lb— TOP — O TOP O|O0|O|0O @)
MIDDLE
I, |/ BLKM |— O, MIDDLE @) @) @)
I; | BOTTOM| O3 BOTTOM O)
®1~255

Description:

Memory contents of the table defined in the top node are copied to the table defined in the middle node in
one scan. Table length is defined in the bottom node.

Input control (1) is used to determine whether this function block is to be executed or not.

Function outputs can be used to determine whether the function block has been executed.

Node Description:

TOP: Starting address of the source memory block.

MIDDLE: Starting address of the target memory block.

BOTTOM: Block length.

Input Control:

l,: When | | (f |)ispresented, the function block is executed.

Function Output:
0=l
0,=0
05;=0

88

[EXAMPLE]

40211
10001 40451
BLKM
#00010

[DESCRIPTION]

When 10001 receives a transition from ‘OFF’ to ‘ON’, then the entries of the first tables as
defined in the top node(40211) are moved to the second table defined in the middle node(40451).

40211 | 01111
40212 | 02222
40213 | 03333
40214 | 04444
40215 [05555
40216 | 06666
40217 | O7777
40218 | 08888
40219 [09999
40220 [00000

BEFORE

40451 | 00000 40451 | 01111
40452 [00000 40452 | 02222
40453 [00000 40453 | 03333
40454 [00000 40454 | 04444
40455 [00000 = 40455 | 05555
40456 | 00000 40456 | 06666
40457 | 00000 40457 | 07777
40458 | 00000 40458 | 08888
40459 [00000 40459 | 09999
40460 [00000 40460 | 00000
40461 | 00000

BEFORE AFTER

89

PUSH

PUSH PUSH FROM REGISTER TO STACK f

SYMBOL: OPERANDS:
0O[1|3|4|C|P]|L
I, — TOP — Oy TOP O|O0|O|0O @)
MIDDLE
I, |/ PUSH — O, MIDDLE @) @)
I; |BOTTOM [O4 BOTTOM O)
®1~255

Description:

This function pushes the content of a register (TOP NODE) to a predefined stack(MIDDLE NODE).
Stack size is defined in the BOTTOM NODE.

Input control (1) is used to determine whether this function block is to be executed or not.

Input control (1,) is used to define the stack mode.

Function outputs can be used to determine whether the function block has been executed, and whether the
stack is full.

Node Description:

TOP: Data to be pushed into stack.

MIDDLE: INDEX is defined in the first word. The starting of the stack is defined in the second word of
the middle node. If the INDEX is equal to zero, then the INDEX is pointing to the top of the stack.
BOTTOM: Length of stack.

Input Control:

I:: When (1 |)ispresented, the function block is executed. INDEX is incremented by 1.
I, =0, data is pushed into the stack at designated address. (LIFO). Used as STACK.
=1, data is put into the bottom of the stack , the original content at the top of the stack is moved to the

next word. (FIFO). Used as QUEUE.

Function Output:

01: |1
0,: =1, if stack is full, i.e. INDEX= stack length.
03:0

90

[EXAMPLE 1]

| 1 40601

40500
PUSH

#00005

[DESCRIPTION]
Since 1, = OFF’, thus the operation mode is LIFO (Last In First Out).
When I; receives an “OFF>ON” transition, the PUSH function is executed as follows:
— 00000+1
l INDEX increment by 1

40500+0— 40500 [00000 40500 [00001 | «—

r— » 40501 | 00004 |e 40501 | 00005
40502 [00008 40502 | 00008

40503 [00006 40503 | 00006

40504 [00010 40504 | 00010

40505 [00016 40505 [00016

40601 [00005 40601 | 00005
BEFORE AFTER

For the next “OFF=>ON” transition on I;:
— 00001+1
INDEX increment by 1

40500+1 — 40500 |_00001 40500 |_oooo2 |
40501 |_00005 40501 |_00005
40502 |_00008 |] 40502 |__00009
40503 |_00006 40503 |_00006
40504 | _00010 40504 |_00010
40505 |_00016 40505 |_00016
40601 |_00009 40601 |_00009

BEFORE AFTER

91

[EXAMPLE 2]

40601
00015
40500
PUSH

#00005

[DESCRIPTION] Since I, =’ON’, thus the operation mode is FIFO (First in first out).
When |, receives an “OFF>ON” transition, the PUSH function is executed as follows:

— 00002+1
INDEX increment by 1

40500 | 00002 40500 | 00003 | «—
40501 | 00005 j::] 40501 | 00001
40502 | 00009] 40502 | 00005
40503 | 00006 — 40503 | 00009
40504 | 00010 — 40504 | 00006
40505 | 00016 40505 | 00010
R’
40601 | 00001 40601 | 00001
BEFORE AFTER

For the next “OFF=>ON” transition on I;:

— 00003+1.
INDEX increment by 1

40500 [00003 40500 | 00004 | «—
40501 [00001 j—_—l 40501 | 00002
40502 [00005 :I 40502 | 00001
40503 [00009 :I 40503 | 00005
40504 [00006 :I 40504 | 00009
40505 [00010 40505 [00006
B
40601 [00002 40601 | 00002

BEFORE AFTER

92

POP

POP POP FROM STACK TO REGISTER L

SYMBOL.: OPERANDS:
0(1|3|4|C|P|L
I, — TOP — O TOP '0) O
MIDDLE
l, — POP — O, MIDDLE O|O0|O|0O @)
I; | BOTTOM| O3 BOTTOM O)
®1~255

Description:

This function moves the content of a stack defined in the top node to the register defined in the middle
node.

Input control (1) is used to determine whether this function block is to be executed or not.

Function outputs can be used to determine whether the function block has been executed, and whether the
stack is empty.

Node Description:

TOP: INDEX is defined in the first word. The starting of the stack is defined in the second word of the
middle node. If the INDEX is equal to zero, then the INDEX is pointing to the top of the stack.
MIDDLE: Data retrieved from stack.

BOTTOM: stack length.

Input Control:

I:: When (f |) ispresented, the function block is executed. INDEX is decremented by 1 first,
then the data is retrieved according to the INDEX.

Function Output:

O:1=1
0,=0
O3 = Stack status.
=1, if stack is empty, i.e. INDEX = 0.

93

[EXAMPLE]

L | 40340
10020
40401
POP
#00100

[DESCRIPTION]
When contact 10020="ON’, the INDEX (40340) is decremented by 1; then the value pointed by
the INDEX is retrieved and stored in the location pointed by the middle node. Through repeated
conducting of contact 10020, the values in the stack are POPed successively.

— 00010-1
l INDEX decremented by 1
index
— 40341+10 [— 40340 | 00010 40340+9 —— 40340 | 00009 |«
40341 | 00000 40341 | 00000
40342 | 00001 40342 | 00001
40343 | 00002 40343 | 00002
40344 | 00003 40344 | 00003
STACK 40345 00004 40345 00004
40346 | 00005 40346 [00005
40347 | 00006 40347 | 00006
40348 | 00007 40348 | 00007
40349 | 00008 40349 | 00008
40350 | 00009 > 40350 | 00009
L3 40341410
\4
40401 | 00000 40401 | 00009

BEFORE AFTER

94

AND

AND AND OPERATION FOR ARRAYS ﬂ
SYMBOL.: OPERANDS:
0[1|3]|4
MIDDLE
I, — AND — O, MIDDLE @) @)
I; |BOTTOM [O4 BOTTOM
®0~65536
01~255
Description:

The contents of top and middle nodes are ANDed, and the result is stored in the middle node.
Input control (1) is used to determine whether this function block is to be executed or not.
Function outputs can be used to determine whether the function block has been executed.

Remark: When the content of the top node is a constant, the constant and the contents of middle node are

ANDed and the result is stored in the middle node.

Node Description:

TOP: Source Array 1, or constant.

MIDDLE: Source Array 2, Resultant Array (after processing).
BOTTOM: Length of Array.

Input Control:

I:: When (t |) ispresented, the function block is executed.

Function Output:

01: |1
02:0
03:0

95

[EXAMPLE 1]

[DESCRIPTION]

| —{ 40090
10025 | 40095
AND
#00002

When contact 10025 is energized, the contents of registers 40090 and 40095 are ANDed, and the result is

returned to register 40095.

40090 OEQOF
40091 0AQA
40095 1FE1
40096 F11E
[EXAMPLE 2]
I | #0FOFh
10025 40095
AND
#00002

40095 AAAA

AND # OFOFH,

OEQOF

0AOA

A 4

OEO1

0AOA

40096 0000

AND # OFOFH

0DOD

96

000A

40090
40091

40095
40096

OR

OR OR OPERATION FOR ARRAYS f
SYMBOL.: OPERANDS:
0(1|3|4|C|P|L
MIDDLE
I, 4 OR — O, MIDDLE @) @) @)
I; | BOTTOM | Os BOTTOM 0
®0~65535
01~255
Description:

The contents of top and middle nodes are ORed, and the result is stored in the middle node.
Input control (1) is used to determine whether this function block is to be executed or not.

Function outputs can be used to determine whether the function block has been executed.

Remark: When the content of the top node is a constant, the constant and the contents of middle node are

ORed and the result is stored in the middle node.

Node Description:

TOP: Source Array 1, or constant.

MIDDLE: Source Array 2, Resultant Array (after processing).
BOTTOM: Length of Array.

Input Control:

I:: When (f |)is presented, the function block is executed.

Function Output:

01: |1
02:0
03:0

97

[EXAMPLE 1]

| 40090

[DESCRIPTION]

40095
OR
#00002

When contact 10025 is energized, the contents of registers 40090 and 40095 are ORed, and the
result is returned to register 40095.

40090 OEQOF
40091 5555h |
40095 1FE1
40096 AAAA [—
[EXAMPLE 2]
I #AAAAQ
10025 40095
OR
#00002
40095 BBBB AND ‘AAAA’,
40096 CCCC AND ‘AAAA’,

BBBB

EEEE

98

40095
40096

OEQOF

5555h

1FEF

FFFF

40090
40091

40095
40096

XOR

XOR XOR OPERATION FOR ARRAYS ﬂ
SYMBOL.: OPERANDS:
01
MIDDLE
I, |/ XOR |— O, MIDDLE @)
I; | BOTTOM | Os BOTTOM
® 0~65535
0 1~255
Description:

The contents of top and middle nodes are XORed, and the result is stored in the middle node.
Input control (1) is used to determine whether this function block is to be executed or not.
Function outputs can be used to determine whether the function block has been executed.

Remark: When the content of the top node is a constant, the constant and the contents of middle node are

XORed and the result is stored in the middle node.

Node Description:

TOP: Source Array 1 or constant.

MIDDLE: Source Array 2, Resultant Array (after processing).
BOTTOM: Length of Array.

Input Control:

I:: When (f |)ispresented, the function block is executed.

Function Output:

01: |1
02:0
03:0

99

[EXAMPLE 1]

| —{ 40090
10025 | 40095
XOR

#00002

[DESCRIPTION]

When contact 10025 is energized, the contents of registers 40090 and 40095 are XORed, and the
result is returned to register 40095.

40090 OEQOF OEQOF 40090
40091 AAAA T AAAA | 40091
40095 1FE1 » 11EE 40095
40096 BBBB |[— 5| 1111h 40096
[EXAMPLE 2]
| | #5555h
10025 40095
XOR
#00002
40095 BBBB XOR ‘5555° | EEEE 40095
40096 CCCC XOR °5555” | 9999 40096

100

COMP

CO MP 1’S COMPLEMENT FOR ARRAYS t
SYMBOL.: OPERANDS:
01134 [C|P]|L
L — TOP — O TOP O|0|0|O ©)
MIDDLE
l, —/ COMP — O, MIDDLE |O ©) ©)
Is; |BOTTOM [O; BOTTOM 0]
®1~255

Description:
I’s complement is obtained for the content of the top node, and the result is stored in the middle node.

Input control (1) is used to determine whether this function block is to be executed or not.
Function outputs can be used to determine whether the function block has been executed.

Node Description:

TOP: Source Array.

MIDDLE: Resultant Array.

BOTTOM: Length of Array.

Input Control:

l,: When | | (f [) ispresented, the function block is executed.

Function Output:
0=l
0,=0
05;=0

101

[EXAMPLE]

[DESCRIPTION]

| | 40090
10025 | 40095
COMP
#00001

When contact 10025 is energized, 1’s complement is obtained for the content of register 40090,

and the result is returned to register 40095.

40090

OEOF

—— | 0000111000001111

Y

1’s complement

102

llllOOOlllllOOOO/

OEOF

F1FO

40090

40095

CMPR

CMPR |BIT COMPARISON BETWEEN TWO MATRIX t

SYMBOL: OPERANDS:
0O[1|3|4|C|P]|L
L— TOP — 0O TOP O|O0|O|0O @)
MIDDLE
I, |/ CMPR |—0O, MIDDLE @) @)
I; | BOTTOM| O3 BOTTOM O)
®1~255
Description:

This function compares the matrix pointed by the top and middle nodes. If a difference is found between the
corresponding matrix locations, then the index of that element is stored in the middle node. Input control
(1) is used to determine whether this function block is to be executed or not. Input control (I,) is used to
indicate the position where comparison is started. Function outputs can be used to determine whether the
function block has been executed and whether those tables are different or not.

b15 Wn b0 b15 W2 b0 b15 W1 b0

17 16 1

Node Description:

TOP: matrix 1.

MIDDLE: Index and matrix 2. INDEX is stored in the first word. Matrix 2 is stored starting from the
second word. If the value of the INDEX is zero after searching, it represents that the contents of the two
matrixes are identical.

BOTTOM: Length of matrix (word).

Input Control:

l;: When | | (ﬂ) is presented, the function block is executed. When a difference is found, the
INDEX points to the position where the difference is found.
I,: Start position of the comparison.
=0, start from the position pointed to by the INDEX.
=1, start from the first position
Function Output:

01 = |1
0O,=1, if a difference is found.
03:0

103

[EXAMPLE]

| | 40010 |—()

10001 00001
40100 | ()
CMPR | 00002
#00001

[DESCRIPTION]

When contact 10001 is energized, the matrix starting from 40010 is compared against the matrix
starting from 40100. Since the fourth bit is different, then the index of that location is stored in
the middle node and coil 00002 is energized.

40010 OFOF » 0000111100001111
40100 0004 «—— The 4th bit is different
40101 OF07 » 0000111100000111

104

BROT

BROT BIT ROTATE/SHIFT FOR MATRIX t

SYMBOL: OPERANDS:
0O[1|3|4|C|P]|L
Lb— TOP — O TOP O|O0|O|0O @)
MIDDLE
I, |/ BROT |— O, MIDDLE @) @) @)
I; |BOTTOM [O4 BOTTOM O)
®1~255

Description:

Using the bit as a unit, this function performs array rotate or shift. The result is stored in the middle node.
The matrix is defined in the top node.

Table length is defined in the bottom node.

Input control (1) is used to determine whether this function block is to be executed or not.

Input control (I,) is used to define the direction.

Input control (I3) is used to define the mode.

Function outputs can be used to determine whether the function block has been executed.

Node Description:

TOP: Source matrix. SHIFT MODE
MIDDLE: Target matrix. LEFT IO4I bs _ Wn) bis Wi bo
BOTTOM: Length of matrix (word). | | | N | | | '

o]
Input Control:
I,: Execution control. RIGHT 15 Wn 0 bis Wi b O
When | L (ﬂ) is presented, (Al | = —{ [[] _.|j
rotate/shift operation is performed one bit per scan.
I,: Direction
=0, Left.
=1, Right. ROTATE MODE
I5: Mode. LEFT b5 Wh b
Ny o N el B] | | |
=1, Rotate.
Function Output: RIGHT
0=l
O,: Bit shifted into this position.
03;=0

o

Iy

105

[EXAMPLE]

| | 40010

40010
BROT

#00001

[DESCRIPTION]

When contact 10001 receives a transition from ‘OFF’ to ‘ON’ and I,=I3=1, then a right rotate
operation is performed.

INITIAL STATE|0]|0]1(/0]0[{0(0]0|0|0|0|0f0}J1]0[1| 40010

AFTER 1stSCAN [1]0]0[1/0]|0[0|0]0|0|0]0|O[0O|1][0O| 40010

AFTER2ndSCAN [0]1]0[0|1]/0[0|0]0|0|{0]0|0[0|0O|1| 40010

106

ODSR

ODSR NIBBLE ROTATE/SHIFT FOR MATRIX t

SYMBOL.: OPERANDS:
0(1|3|4|C|P|L
I,— TOP +— 0O TOP O|O0|0|0O @)
MIDDLE
I, —/ ODSR —0O, MIDDLE @) O O
I; | BOTTOM| O3 BOTTOM @
®1~255

Description:

Using the nibble as a unit, this function performs array rotate or shift. The result is stored in the middle
node. The matrix is defined in the top node. Table length is defined in the bottom node.

Input control (1,) is used to determine whether this function block is to be executed or not.

Input control (I,) is used to define the direction.

Input control (I3) is used to define the mode.

Function outputs can be used to determine whether the function block has been executed.

Node Description:

TOP: Source matrix SHIFT MODE

MIDDLE: Target matrix Wn Wn-1 W1

BOTTOM: Length of matrix (word) LEFT | | | | |<—| | | | |'— ~~~~~~~~ D]:D
Input Control: Wn Wn-1

l1: Execution control. RIGHT [dddd— [[]]} —[T1T] D:[D
When T (e) is presented,

rotate/shift operation is performed one nibble per scan.
2. Direction ROTATE MODE
=0, Left Whn Whn-1 W2 W1
=1, Right Lert U — [=1 — U=
I5: Mode.
=0, Shift. Wn Wn-1
=1, Rotate. rigit —~[I11]—[IT}—{ I — U~
Function Output:
O=1
0,=0
03=0

107

[EXAMPLE]

| |—{ 40010

40010
ODSR

#00001

[DESCRIPTION]

When contact 10001 receives a transition from ‘OFF’ to ‘ON’ and I,=I3=1, then a right rotate
operation is performed.

Initial State{0|0]1|0}0]0{0|0J0]|0(0|0J0[1|/0|0| 40010

After 1st Scan|0|1(0({0J0|0|1|/0]10|{0|0|0JO(0O|0O]|0O| 40010

After 2nd Scan{0|{0|0|0J0(1|0|0}J0O(0[1|0J0|0|(0|0]| 40010

108

MBIT

|\/|B|T MODIFY BIT MATRIX f
SYMBOL.: OPERANDS:
0(1|3|4|C|P|L
MIDDLE
L, — MBIT |— O, MIDDLE @) @) @)
I; |BOTTOM [O4 BOTTOM @
®1~65535
@1-~255
Description:

This function is used to SET or CLEAR a certain bit in a matrix. Bit location is defined in the top node.
Array to be modified is defined in the middle node. Array length (WORD)is defined in the bottom node.
Input control (I;) is used to determine whether this function block is to be executed or not.

Input control (1,) is used to define the action (SET or Clear).

Input control (I3) is used to define the behavior of the INDEX.

Function outputs can be used to determine whether the function block has been executed, and the status of
the INDEX.

Node Description:

TOP: INDEX (pointing to the bit to be modified). INDEX=1 =» The first bit.
MIDDLE: Source matrix.

BOTTOM: Matrix length (word).

Input Control:

l,: When | | (1 |)ispresented, the function block is executed.
I,: Action.
=0, bit clear
=1, bit set
I5: INDEX control. If 13=1 and TOP = 4xxxx, then the INDEX is incremented by 1 after execution.
Function Output:

Oi=1
0= 1,
Os: Status of the INDEX.
=1, if INDEX is larger than the value of the BOTTOM node times 16.

109

[EXAMPLE]

- 40093
10001
40733

MBIT

#00003

[DESCRIPTION]

00005 is stored in the top node (40093). When contact 10001 is energized, and 1,=1, then the 5"
bit of the matrix starting from 40733 to 40735 is set to 1.

40093

40733
40734
40735

0005

Set the 5th bit in the array to 1.

}

0000

- | 0000000000000000 — | 0000000000010000 — 40733

0000

L | 0000000000000000 — [0000000000000000 |— 40734

0000

- [0000000000000000 —— [0000000000000000 — 40735

BEFORE

110

0010

0000

0000

SENS

SENS SENSING OF A BIT IN MATRIX f
SYMBOL.: OPERANDS:
0(1|3|4|C|P|L
MIDDLE
I, —| SENS — Oy MIDDLE @) @) @)
I; |BOTTOM [O4 BOTTOM @
®1~255
@1~65535
Description:

This function is used to sense a certain bit in a matrix. Bit location is defined in the top node. Matrix to be
modified is defined in the middle node. Array length is defined in the bottom node.

Input control (1;) is used to determine whether this function block is to be executed or not.

Input control (1,) is used to define the behavior of the INDEX.

Input control (I3) is used to reset the INDEX.

Function outputs can be used to determine whether the function block has been executed, and the status of
the INDEX.

Node Description:

TOP: INDEX (pointing to the bit to be checked). INDEX=1 =» The first bit.
MIDDLE: Source matrix.

BOTTOM: Matrix length (word).

Input Control:

l: When | | (f |)ispresented, the function block is executed.

I, : INDEX control. If I3=1 and the top node is 4XXXX, then the INDEX is incremented by 1 after
execution.

I5: INDEX control.
=1, Reset INDEX.

Function Output:

O:=1
O, = The state of the bit sensed.
Os: Status of the INDEX.
=1, if INDEX is equal to zero or larger than the value of the BOTTOM node times 16.

111

[EXAMPLE]

- | 40421
10001
40151 | ()
SENS 00095
#00002

[DESCRIPTION]

When contact 10001 is energized and 1,=1, the state of coil 00095 is set to that of the bit
checked. Since (40421)=0001, The 1st bit is checked. And since the bottom node is #00002, thus
the registers 40151 ~40152 are checked.

—
40421 | 0001 40452 | 0000000000000000 40451 | 0010001000100010
0001 +1 bit 1 =07 «—
00095 = OFF
—
40421 | 0002 40452 | 0000000000000000 40451 | 0010001000100010
INDEX is incremented by 1 bit 2 =17 *—
until all bits in 40451 and 40452 are checked. 00095 = ON

112

DECO

DECO DECODER (4->l6) t

SYMBOL.: OPERANDS:

I, — TOP — O TOP

MIDDLE
I, — DECO — O, MIDDLE
I; |BOTTOM [O4 BOTTOM
®0-~-3

Description:

This function is a 4 bit to 16 bit decoder. The top node contains 4 sets of 4-bit data. The set of data to be

decoded is defined in the bottom node.
Input control (1) is used to determine whether this function block is to be executed or not.
Function outputs can be used to determine whether the function block has been executed.

Node Description:

TOP: Input to decoder, only four bits (nibble) are used.
MIDDLE: Decoder output.

BOTTOM: Determine which nibble in the TOP node is to be decoded.

Input Control:

I:: When (f |)is presented, the function block is executed.

Function Output:

01: |1
02:0
03:0

113

TRUTH TABLE

[EXAMPLE]

INPUTS OUTPUT WORD
3210[1514131211109 8 7 6 5 4 3 2 1 0
0 00O0(00O0O0O0DO0O0O0OOOOOOOO 01
000 1(0 0000000000000 T10
0010[{0000000000000O0T100
001 1(0000000000001000
0100[(0000000000010000O0
0101(0000000000100000
0110[{0000000001000000
0111(0000000010000000
1000/000000010000O0O0O0O
100 1/00 0000100000000 0O
1010/000001000000000O00
1011/00 0010000000000 0
1100/000100000000000O00
1101/001 0000000000000
1110/0100000000000000
111 1)1 00 0000000000000
| |— 40019
10001 | 40009
4 DECO
#00000

[DESCRIPTION]
Let register 40019 = 2CF9h = 0010 1100 1111 1001B, and #00000 is defined in the bottom node.
#00000 indicates that the first set of 4-bit data is to be used as the decoder function input. The
first 4-bit set in this example is 1001B, which is equal to 9. Therefore, the 10th bit (0 means the
1st bit and 15 means the 16th bit) in the middle node (40009) will be set after contact 10001 is
energized.

40009

40019

0200

0000

0010

0000

0000

2CF9

S

—— 0010 1100 1111

These four bits are used for decoding.

1001

114

ENCO

ENCO ENCODER (16->4) L

SYMBOL: OPERANDS:
0O[1|3|4|C|P]|L
I,— TOP 0O TOP O|O0|O|0O @)
MIDDLE
I, — ENCO —0O, MIDDLE @) @) @)
I; | BOTTOM | O3 BOTTOM O]
®0-~-3

Description:

This function is a 16-bit to 4-bit encoder. The top node contains the data to be encoded. The bottom node
indicates the 4-bit set to be used to store the encoded result, and the encoded data is stored in the middle
node.

NOTE: If more than one bit is set in the top node, then the bit which is closer to the most significant bit
will be used for encoding.

Input control (1) is used to determine whether this function block is to be executed or not.

Function outputs can be used to determine whether the function block has been executed.

Node Description:

TOP: Input to encoder.

MIDDLE: Encoder result.

BOTTOM: Nibble (0~3) where the encoder result is stored.
Input Control:

I:: When (f |)is presented, the function block is executed.

Function Output:

01 = |1
O, = indicator

=1, if the valued stored in the TOP node is zero.
03:0

115

TRUTH TABLE

INPUT WORD OUTPUTS
151413121110 9 8 7 6 5 4 3 2 1 0|3 2 1 0
000000O0O0DO0OO0DOO0O0OO11(0000
000000O0O0DO0OO0OO0O0GO0T1O0[0oo0o0O0T1
000000O00DO0OO0DOO0OTZ1O0O0foo01o0
000000O0O0DO0OO0OO0T11O0GO0GO0f0oo011
000000O0O0DO0OO0OTILOGOT OGO Of[0o100
000000O0O0DO0O01O000O0O0GO0f0o101
000000O00DO0T11000O0O0TGO0f0o110
00000O0O00100000O0GO0|01 11
000000DO01000O0O0O0TOTO0|[1000
00000O0I10000O0O0GO0TOGO|[1001
00000100000O0O0GO0G OGO O|[1010
0000100000O00O00O0OGO0TO|LO011
00010000000O0O0O0OTO0|[1100
00100000000O0O0GO0GOGO0f1101
0100000000D0O0O0GO0GOGO0|1110
1000000000O00O000O0GO0GO 01111

[EXAMPLE]

- —{ 40009
10001 | 40019

4 ENCO

_| #00000

[DESCRIPTION]

Let 40009 = 0040h = 0000 0000 0100 0000h, and #00000 is given in the bottom node. Since
MSB is the 16th bit and LSB is the first bit in a 16-bit register, thus, the 7th bit is encoded to 6;
and 6 is equal to 0110B. This 0110B 4-bit set is moved to the 1st 4-bit set of register 40019 as
defined in the bottom node(#00000)

40009 | 0040+ ——/ 0000 [0000 [0100 | 0000
40019 | 0006+ |—— 0000 0000 0000 |0110

116

B->C

B_>C BINARY TO BCD CONVERTION 1

SYMBOL: OPERANDS:
0O[1|3|4|C|P]|L
L— TOP — 0O TOP O|O0|O|0O @)
MIDDLE
l, — B->C — 0O, MIDDLE @) @) @)
I; | BOTTOM | O3 BOTTOM O)
D1~2

Description:

This function performs binary to binary-coded-decimal conversion. The data to be converted is defined in

the top node, and the converted data is stored in the middle node. The bottom node defines the conversion
type (word or long word).

Input control (1) is used to determine whether this function block is to be executed or not.

Function outputs can be used to determine whether the function block has been executed and whether the

result is correct or not.

Node Description:

TOP: data set (binary) to be converted, must be <=9999(decimal).
MIDDLE: Conversion result.
BOTTOM:1.Word conversion.
2.Long word conversion.
Input Control:

l;: When [] (f |) ispresented, the function block is executed.

Function Output:

O:=1
O,= indicator
=1, if the valued stored in the TOP node is >9999(decimal) when the value of bottom node is ‘1°.
=1, if the valued stored in the TOP node is >99999999(decimal) when the value of bottom node is 2.

03:0

117

[EXAMPLE]

| 40100
10001
- 40009
B->C
#00002

[DESCRIPTION]

Let register (40100)= 0001h, and register (40101)= 0002h. When contact 10001 is energized,
since #00002 is defined as a long word conversion, then the top node long word (40100)
10010h=65538d are converted and stored in registers 40009 and 40010.

N\

40100 0000 | 0000 | 0000 | 0001

40101 0000 [0000 | 0000 | 0010 |/ 10010h
N\

40009 0000 | 0000 | 0000 | 0110 P

40010 0101 | 0101] 0011 [1000 |) 65538d

118

C->B

C_>B BCD TO BINARY CONVERTION f

SYMBOL: OPERANDS:
0O[1|3|4|C|P]|L
L— TOP — 0O TOP O|O0|O|0O @)
MIDDLE
I, — C>B — 0O, MIDDLE @) @) @)
I; | BOTTOM| O3 BOTTOM O)
D1~2

Description:

This function performs binary-coded-decimal to binary conversion. The data to be converted is defined in

the top node, and the converted data is stored in the middle node. The bottom node defines the conversion
type (word or long word).

Input control (1) is used to determine whether this function block is to be executed or not.

Function outputs can be used to determine whether the function block has been executed and whether the

result is correct or not.

Node Description:

TOP: data set (BCD) to be converted.
MIDDLE: Conversion result.
BOTTOM:1. Word

2. Long word
Input Control:

I:: When (1 |)is presented, the function block is executed.

Function Output:

01: |1
O, = indicator

=1, if the valued stored in the TOP node is not in BCD format.
03:0

119

[EXAMPLE]

| —{ 30009
10001

4 40019

C->B

-{#00002

[DESCRIPTION]

Science this is a long word conversion (bottom node is #00002). When contact 100d is energized,
the top node long word (30009) = 65538d is converted to 10010h and stored in middle node
(40019), (40020).

Let register (30009) = 8888d = 22B8h, and register (30010) = 7777d = 1E61h.

When contact 10001 is energized, since #00002 is defined to the bottom node, then the

converted BCD codes are stored in registers 40019 and 40020.

30009 0000 | 0000 | 0000 | 0110 \|
30010 0101 | 0101 | 0011 | 1000) 65538d

40019 0000 | 0000 | 0000 | 0001
40020 0000 | 0000 | 0000 | 0010 10010h

120

SSEG

SSEG SEVEN-SEGMENT DECODER T 1 Tt

SYMBOL: OPERANDS:
0O[1|3|4|C|P]|L
Lb— TOP — O TOP O|O0|O|0O @)
MIDDLE
I, | SSEG — O, MIDDLE @) @) @)
I; |BOTTOM [O4 BOTTOM O)
®1~4

Description:

The register for the top node is divided into four 4-bit sets of data, and each set is converted for 7-segment
display format. The bottom node defines the size (1~4) to be converted. The result is stored in the middle
node.

Input control (1) is used to determine whether this function block is to be executed or not.

Function outputs can be used to determine whether the function block has been executed.

Node Description:

TOP: data to be converted.

MIDDLE: conversion result.

BOTTOM: number of digits to be converted (1digit = 4 bits).
Input Control:

l: When | | (_f [)is presented, the function block is executed.
I, : Leading zero display control

=0, normal display.

=1, leading zero suppressed.
Function Output:

01: |1
02 =0
03 =0

121

[EXAMPLE]

L | 40090
10001
- 40095
SSEG
7 #00004

[DESCRIPTION]

When 1,=1, the data contained in register 40095 is divided into four 4-bit sets and converted to
7-segment display format. Since the bottom node is given #00004, thus, all four 4-bit sets are
converted and stored in the middle node registers 40095 and 40096.

BOTTOM
digit4
digit3
digit2

| digitl
| _O0-~F Il 0~F ||___o~F || 0~F |
b15 b12 bil b8 b7 b4 b3 b0
40090
digit2 digitl
1 || |
[11 |
b15 b8 b7 b0

40095 |0 |g | flefd|c|blaj0|lg|fle|d]|]c|b]a

4006 |0 |g | flefd|c|bla[0|lg|fle|d]|]c|b]a

a

f b

e[g c
d

122

TRUTH TABLE

a

number

Display

* Leading zeroes are converted to 0’s.

123

PACK

PACK WORD PACK/UNPACK] £
SYMBOL.: OPERANDS:
0[/1|3]4|C|P|L
I, —| TOP — 0O TOP O|0|O0|O O
PACK BOTTOM |O O O

I, | BOTTOM | O,

Description:

Depending on I, this function splits the contents of the top node into two bytes, and stores them in the
middle node; or, takes two LOW BYTEs from the top node, concatenate to form a new 16-bit word and

stores it in the middle node.
Input control (1) is used to determine whether this function block is to be executed or not.

Node Description:

TOP: Data to be processed.
BOTTOM: Process result.

Input Control:

I:: When JL (ﬂ) is presented, the function block is executed.
I,: Pack/Unpack
=0, Unpack (splits the source data into two words and stores them in the bottom node).

=1, Pack (concatenate the lower bytes of two words and stores the word in the bottom node).

Function Output:

01: |1
02: 0

124

[EXAMPLE 1]

UNPACK

L | —{ 40090

10001 PACK
40095

[DESCRIPTION]

When contact 10001 is energized, the content of the top node(40090) is split into two bytes
which are stored in the middle node (40095 and 40096)

40090 | OEOF 00001110 | 00001111 |—* | OEOF | 40090
40095 [1234 00000000 OOOOlllQ_ ——> | 000E | 40095
40096 | 5678 00000000 | 00001111 | —> | 0O0OF | 40096

BEFORE AFTER

125

[EXAMPLE 2]

PACK
|| [40090
10001 || PACK
40095

[DESCRIPTION]

When contact 10001 is energized, two LOW BYTEs taken from the top node(40090 and 40091),
are concatenated to form a new 16-bit word which is stored in the middle node(40095).

40090 | OEOF 00001110 00001111 OEOF | 40090
40091 [2355 00100011 /01010101 2355 40091
/ A 4
40095 [1234 00001111 | 01010101 OF55 40095
BEFORE AFTER

126

I->F

INTEGER TO FLOATING POINT
I->F CONVERSION T tt
SYMBOL.: OPERANDS:
0O|l1|3|4|C|P|L
I, — TOP — Oy TOP O|0 O
I->F BOTTOM O O
I, | BOTTOM | O3

Description:

This function converts an integer stored in the top node to a floating point number and stores in the
registers defined in the middle node.

Input control (1) is used to determine whether this function block is to be executed or not.
Function outputs can be used to determine whether the function block has been executed.

Node Description:
TOP: Data to be converted, integer (16 bits).
BOTTOM: Conversion results (32 bits).

Input Control:
l.:When | | (f |) ispresented, the function block is executed.

Function Output:

01: |1
02: 0

127

[EXAMPLE]

40120

|I->F

40130

[DESCRIPTION]

Converts the integer stored in the top node (40120) to a floating number and stores in the middle
node(40130 & 40131). A floating point number is represented by two words: bitO~bit6 represent
the exponent, bit7is the sign bit(0: positive, 1:negative), and bit8~bit31 represent the fraction.

bo

b3 b8 b7
L | S
2.]_ 2.2 2.3 2-22 2-23 2-2‘
fraction Sign bit exponent
Formula:
1= (-1)°x 2% x Fr S=sign bit, Ezexponent
40120 00003
>
3
40130 | €000 | _ (high byte)— C 0 0 0 0 0 4 2
40131 0042 (low byte) — 1100 0000 0000 0000 0000 0000 0100 0010
1=(-1)°%2 %% (2 +2?)=3

128

F->I

FLOATING POINT TO INTEGER
F-> CONVERSION Lt
SYMBOL.: OPERANDS:
0O|l1|3|4|C|P|L
F->1 BOTTOM O O

I, 7] BOTTOM| O,

Description:
This function converts a floating point number stored in the top node to an integer and stores in the

registers defined in the middle node.
Input control (I;) is used to determine whether this function block is to be executed or not.
Function outputs can be used to determine whether the function block has been executed.

Node Description:

TOP: Data to be converted, floating point number (32 bits).
BOTTOM: Conversion results. Integer (16 bits).

Input Control:

I:: When (J‘—L) is presented, the function block is executed.

Function Output:

01: |1
O,: Error output
=1, (overflow or < 0)

129

[EXAMPLE]

40130

[DESCRIPTION]

F->I1

7 40150

For a floating point number C000, 0042 stored in registers 40130 and 40131 respectively, the

conversion returns 0003 stored in 40150.

1=(-1)°%2*x(2+27?)=3

40130 | €000 | (high byte) _

40131 [0042 (low byte) 1100 0000 0000 0000 0000 0000 0100 0010
I=(_l)0x2(66-64)x(2-1+2-2)
= 3]

40150 (00003 <

130

JMP

JMP JUMP 1 L
SYMBOL: OPERANDS:
0O[1|3|4|C|P]|L
L— TOP — 0O TOP ®
JMP
|27 702
®L1~L150
Description:

This instruction is used to instruct the program to JUMP to the other portion of the program with matched
label number and EOJ instruction.

Input control (I;) is used to determine whether this instruction is to be executed or not.

Function outputs can be used to determine whether the instruction has been executed.

Node Description:
TOP: Label where JUMP is intended.

Input Control:
I:: When (|) is presented, the instruction is executed.

Function Output:
01: |1
02:0

131

[EXAMPLE]

b 1 Looo01
10001 JMP
]
—] — [DESCRIPTION]
— When contact 10001 is energized, the program
between JMP L00001and EOJ L000O01 is skipped.
; The execution continues from PAGE N.
- — L00002 If contact 10001 is not energized, then no JUMP
10002 JMP action is performed.
If contact 10001 is not energized, but contact
10002 is energized, then the program between JMP
. L00002 and EOJ L0O0002 is skipped.
| ' - The execution continues from PAGE M.
L00002
EOJ
L00001
PAGE M
EOJ
PAGE N

132

EOJ

EOJ END OF JUMP
SYMBOL: OPERANDS:
0O[1|3|4|C|P]|L
Lb— TOP — O TOP ®
EQJ
|27 702
®L1~L150
Description:

This instruction is used with JMP instruction. The label numbers must be matched. Only one JMP-EQJ pair
is allowed in a ladder page. The label number must not be repeated. The program between JMP and EOQJ is
skipped if the Input Control condition is met.

Node Description:
TOP: Label indicating the end of JUMP.

Input Control:

I;: don’t care.

Function Output:
01: I
02:0

133

JSR

JSR JUMP to SUBROUTINE I

SYMBOL : OPERANDS:
0Ol1|3[4[C|P|L
I, — TOP — Oy TOP ®
JSR
|27 702
@L1~L32

Description:

This instruction is used to call the subroutine whose label is the same as the one defined in the Top node.
Subroutine calls may be nested, but only 16 levels are allowed.

Programming requirements are: ®SBR and RET are paired. @SBR instruction is behind the JSSR
instruction, and ®RET instruction is behind the SBR instruction.

Input control (1) is used to determine whether this instruction is to be executed or not.

Function outputs can be used to determine whether the instruction has been executed.

Node Description:

TOP: Label of the subroutine to be called.

Input Control:
I:: When (f L)is presented, the instruction is executed.

Function Output:

01: |1
02:0

134

[EXAMPLE]

LADDER
JSR L00001 | Call subroutine 00001

~ ~

Main ~ ~
Program JSR L00010 | Call subroutine 00010
Area ~ ~
_ EOP
SBR L00001 | Beginning of subroutine 00001
Subroutine
RET LO00001 | End of subroutine 00001
Program ~ ~
Area

SBR L00010 | Beginning of subroutine 00010

RET LO00010 | End of subroutine 00010

[DESCRIPTION]
The main program area and the subroutine area are separated by the EOP instruction.

If the EOP instruction does not exist, then the first SBR instruction is used as a program
delimiter.

135

[EXAMPLE]

—
10001 | LO00O1 | Call subroutine 00001
ISR
Ladder program
EOP |

End df main program

L00001 | Beginning of subroutine 00001
SBR

Ladder program

—| | L00010 |
10002 | JSR | Call subroutine 00010

L00001 | End of subroutine 00001
RET

Ladder program
L00010 | Beginning of subroutine 00010
SBR

Ladder program

L00010 |

RET | End of subroutine 00010

[DESCRIPTION]

When contact 10001 is energized, subroutine LO0001 is executed. The program control is
returned to the main program when RET L00001 is encountered. The execution of the main
program is terminated when the EOP instruction is encountered.

During the execution of subroutine L00001, if contact 10002 is energized, then subroutine
L00010 is executed until RET L00010 is encountered. When RET L0O0001 is encountered, the
program control returns to the main program.

If contact 10001 is not energized, then neither subroutine LO0O001 nor L0O0010 is executed.

136

SBR

SBR SUBROUTINE
SYMBOL.: OPERANDS:
0(1|13|4|C|P|L
IL— TOP — O TOP ®
SBR
|27 702
®L1~L32

Description:
This instruction is used to define the beginning of a subroutine. A matched label RET instruction is

required to define the end of the subroutine. When the subroutine is called, the program control is
transferred from the main program to the next page of the program where the SBR is defined.

Node Description:

TOP: Label of the subroutine defined.

Input Control:

I1: Don’t care.

Function Output:

01: 0
02: 0

137

RET

RET RETURN FROM SUBROUTINE
SYMBOL.: OPERANDS:
I, | TOP — O TOP
RET
I, — — O
OL1~L32
Description:

This instruction is used to define the end of a subroutine. The label number is defined in the top node and
must be the same as the calling SBR label number.

Node Description:
TOP: Label of the subroutine.

Input Control:

I;: Don’t care

Function Output:
01: 0
02: 0

138

FOR

FOR LOOP L
SYMBOL: OPERANDS:
ol1|3]4|c|P|L
L, TOP | O TOP @
FOR
l, — BOTTOM— O, BOTTOM olo|o
@ 1~255
@ L1~L64

Description:
The program segment between the FOR and NEXT instructions with the same label number (defined in the

TOP node) is repeated for a number of times (as defined in the BOTTOM node).
Loops may be nested. Maximum of 8 levels are allowed.

Node Description:

TOP: Label of the loop.
BOTTOM: Number of repetitions.

Input Control:

I:: When (f |) is presented, a matched label NEXT instruction is found whose position is behind
the FOR instruction. Then, this instruction is executed.

Function Output:

01: 0
02: 0

139

[EXAMPLE]

|_
10001 | LOOOO1
FOR
#00010

— L00011
10002 | FOR LOOP(00001)
40001

LOOP(00011)

LO0011
NEXT

Pagem ——

L00001
NEXT

Page n

[DESCRIPTION]

When contact 10001is energized, the loop (L0O0001) is executed 10 times, then the program
resumes from page n. If contact 10001 is not energized, the loop (L00001) is skipped. If both
contacts 10001 and 10002 are energized, then loop L0011 is executed N times (as defined in the
bottom node 40001), and loop L0O0001 is executed 10 times. If contact 10001 is energized while
contact 10002 is not, then the loop (L00001) is executed for 10 times, while loop L0011 is
skipped.

140

NEXT

NEXT END of LOOP

SYMBOL: OPERANDS:
0O[1|3|4|C|P]|L
I,— TOP —0O, TOP ®
NEXT
|27 702
®L1~L64

Description:

This instruction is used to define the end of a loop with the same label number.

Node Description:
TOP: Label of the loop.

Input Control:
I,: no action.

Function Output:
01: |1
02:0

141

CHAPTER 4: FLOW CONTROL INSTRUCTIONS

EOP

EOP END of MAIN PROGRAM

SYMBOL.: OPERANDS:
0(1|3|4|C|P|L
|17 701
EOP

|27 702

Description:

This instruction is used to define the end of a program. All the programming behind this instruction is
ignored. The program scan terminates when this instruction is encountered.

Node Description:

Input Control:

I;: Don’t care

Function Output:

01:0
02:0

142

SKIP

SKIP SKIP Il
SYMBOL.: OPERANDS:
l,— TOP |— O TOP
SKIP
I, — — O
Description:

This instruction is used to control the sequence of the program execution.
Input control (1) is used to determine whether this instruction is to be executed or not.
Users are recommended to have only a SKIP instruction in a ladder page.

Node Description:

TOP: number of program pages to be skipped. If this value is equal to 0, then the program scan is

terminated.

Input Control:

I:: When (|) is presented, the instruction is executed.

Function Output:

01: 0
02: 0

143

[EXAMPLE]

- 1 40001
10001

SKIP

[DESCRIPTION]
When contact 10001 is energized, then the skip instruction is executed.
1. If the content of register 40001is #00002, then the next two pages are skipped.
2. If the content of register 40001is 0, then the program execution for this scan is terminated.

Let register (40001)=00002:

10001 = OFF 10001 =ON
Page 1 l: Page 1
Execution Page 2 Page 2
order l: Skip ‘OFF’ Skip ‘ON’
Page 3 Page 3
E Page 4 Page 4
E Page 5 Page 5
l: Page 6 l: Page 6

The SKIP instruction is at the bottom of Page 2.

144

MCS

MCS MASTER CONTROL SET] 1
SYMBOL.: OPERANDS:
0|1(3|4|C|P|L
|17 701
MCS
Description:

This function block is used for controlling the program flow. There must be a matched label MSE (Master
control end) function block for the ladder program to execute correctly. The power rail input of the ladder
program segment between the MCS-MSE pair is determined by the I, of MCS. If I; is ON, the power ralil
input of the ladder program segment between the MCS-MSE pair is ON or rice versa.

Input control (I;) is used to determine whether this function block is to be executed or not.

Function outputs can be used to determine whether the function block has been executed.

Nesting MCS are not supported.

Node Description:

Input Control:

I,: Power control

Function Output:

O Iy
02:0

145

[EXAMPLE]

—| }—{#oo001

...

MSE

[DESCRIPTION]

When contact 10001 is energized, the power rail input of ladder program segment between the
MCS-MSE function blocks is OFF. If the contact 10001 is not energized, then the ladder
program segment is executed as usual.

146

MSE

MSE MASTER CONTROL END T 1 L
SYMBOL.: OPERANDS:
0|1(3|4|C|P|L
Ili 701
MSE
Description:

This function block is the matched ending instruction for MCS function block.

Node Description:

Input Control:

Function Output:
01:0
02:0

147

INIP

INIP INITIALIZATION OF POINTER T 1 Tt
SYMBOL.: OPERANDS:
0[1[3|]4|C|P|L
INIP
I, —| BOTTOM[— O, BOTTOM ®

O®PO~P15

Description:
This function is used to define the content of a pointer. The constant in the bottom node is used to define

which pointer is to be initialized, and the number in the top node is the initialization value.
Input control (1) is used to determine whether this function block is to be executed or not.

Node Description:
TOP: Type of register and its number.
BOTTOM: Pointer to be defined.

Input Control:
I:: When (|) is presented, the instruction is executed.

Function Output:
01:|1
02:0

148

[EXAMPLE]

| |— 40001
10001 | INIP
P0002

[DESCRIPTION]

When contact 10001 is energized, the relationship: (P0002)=40001is defined.
This means the (P0002) pointer points to this 40001 register.

149

INCP

|NCP INCREMENT OF POINTER 1t

SYMBOL.: OPERANDS:
0(1|3|4|C|P|L
I,— TOP +— 0O TOP @
INCP
|27 702
®P0~P15

Description:

This function is used to increment the pointer by one. The constant in the top node defines which pointer is
to be incremented.
Input control (1) is used to determine whether this function block is to be executed or not.

Node Description:
TOP: Pointer to be incremented.

Input Control:
I:: When (|) is presented, the instruction is executed.

Function Output:
O:=ly
O,=Error
=1, When this function is called, the reference number pointed by the pointer is already pointed to the
last reference number of that reference type.

150

[EXAMPLE]

| I P0O002

INCP

[DESCRIPTION]

Assume that pointer 2 contains 40001, when 10001=1. Then, pointer 2=40002, i.e.
P0002=40002 after execution.

151

PADD

I; —| BOTTOM [~ O4

O®PO~P15
00~9999

PADD ADDITION OF POINTER t
SYMBOL.: OPERANDS:
0113
I, — TOP — O TOP
MIDDLE
I, 7| PADD [O,

Description:

in the content of the pointer in the bottom node.

The content of the pointer is the top node and the constant in middle node are added and the sum is stored

Node Description:

TOP: Pointer of top node
Middle: A constant

Bottom: Pointer of buttom node

Input Control:
I:: When 1L (ﬂ) is presented, the function block is executed.

Function Output:
01=1; (O will be ‘0’ when O3 is ‘1)
02: 0

O;= 1 (error output)=1, if pointer is beyond the upper limited address.

152

[EXAMPLE]

P0O002
10001 | #00004
PADD

PO003

[DESCRIPTION]

When the contact 10001 is energized, the content of pointer P0002 is added 4 and the sum is
stored to the content of pointer PO003.

153

DECP

DECP DECREMENT OF POINTER T 1 Tt

SYMBOL.: OPERANDS:
0(1|3|4|C|P|L
1 TOP — Oy TOP ®
DECP
I2 702
®P0~P15

Description:

This function is used to decrement the pointer by one. The constant in the top node defines which pointer
is to be decremented.

Input control (I;) is used to determine whether this function block is to be executed or not.

Node Description:
TOP: Pointer to be incremented.

Input Control:
I:: When 1L (ﬂ) is presented, the instruction is executed.

Function Output:
01:|1
O,= Error

=1, when this function is called, the reference number pointed by the pointer is already pointed to the
first reference number of that reference type.

154

[EXAMPLE]

| [P0002

DECP

[DESCRIPTION]

Assume that pointer 2 contains 40011, when 10001=1. Then, pointer 2=40010, i.e.
P0002=40010 after execution.

155

PSUB

stored in the content of the pointer in the bottom node.

PSUB SUBRATION OF POINTER L
SYMBOL: OPERANDS:
0|11(3
L— TOP — O TOP
MIDDLE
PSUB
I, — BOTTOM— O, BOTTOM
®P0O~P15
00~9999
Description:

The content of the pointer in the top node is substrated by a constant in middle node and the result is

Node Description:

TOP: Source pointer
MIDDLE: A constant
BOTTOM: Destination pointer

Input Control:

Function Output:
01=1; (O will be ‘0’ when O3 is ‘1)
02: 0

I:: When (|) is presented, the function block is executed.

O; (error output)=1, if pointer is lower than the low limited address.

156

[EXAMPLE]

| | P0002
10001 |#00004
PSUB

PO003

[DESCRIPTION]

When the contact of 10001 is energized, the content of pointer PO002 is substrated 4 and the
sum is stored to the content of pointer PO003.

157

MOVE

MOVE DATA MOVE 1 f
SYMBOL.: OPERANDS:
0(1|3|4|C|P|L
MOVE
I, — BOTTOM[— O, BOTTOM |O @) @)
®0~65535
Description:

This function is used to define the content of a register (4xxxx) or discrete output (0XXXX).

Input control (1) is used to determine whether this function block is to be executed or not.

Node Description:

TOP: Referenced (or source) register or a constant.
BOTTOM: Register or (0XXXX) to be initialized (target).

Input Control:

I:: When (|) is presented, the instruction is executed.

Function Output:

01:|1
02:0

158

[EXAMPLE]

#00100
_Ilooor MOVE

40001

[DESCRIPTION]

When contact 10001 is energized, the constant #00100 is stored in register 40001, i.e.
(40001)=100.

159

RCMP

RCMP REGISTER COMPARE
SYMBOL.: OPERANDS:
0(1|3|4|C|P|L
MIDDLE
I, — RCMP — O, MIDDLE O|O0|O0O|O0O|®|0O
I; — BOTTOM — O3 BOTTOM Oo|0|O
®0~65535
g1~2
Description:

This function is used to compare the data in the top node and the middle node.

Input control (1) is used to determine whether this function block is to be executed or not.

Outputs (04, Oy, O3) are represented the comparing result (>, =, <) of top node and the middle node when
this function block is executed.

Node Description:

TOP: Top node data.

MIDDLE: Middle node data.

BOTTOM: Length to be compared (1: Word, 2: Long word)
Input Control:

I:: When (|) is presented, the instruction is executed.

Function Output:
O, : comparing result (data of top node > middle node)
O, : comparing result (data of top node = middle node)

O : comparing result (data of top node < middle node)

160

[EXAMPLE]

| }— 40001 |—)
00080 00011
40001 —()
RCMP | 00012
#00001 —()
00013

[DESCRIPTION]

Assumed that the content of register (40001) = 9000(10) and the content of register (40002) =
500(10): When the contact of 00080 is energized, the coil of 00011 will be ‘ON’ because the
content of (40001) > (40002).

161

CHAPTER 5: SYSTEM RELATED INSTRUCTIONS

DGET

DGET GET CALENDAR DATE IR

SYMBOL.: OPERANDS:
0{1|3]|4|C L
I, — TOP — O TOP e
DGET

|27 702

Description:

This function is used to obtain the system date. The result is stored in the top node (two words).
The high byte of the first word represents year; the low byte of the first word represents month; the high
byte of the second word represents date in a month; and the low byte of the second word represents day in

a week. All numbers are in BCD format.

Input control (1) is used to determine whether this function block is to be executed or not.

Node Description:

TOP: Register to store the calendar date.

Input Control:

l.: When (1 [)is presented,

the instruction is executed.

Function Output:

01:|1
02:0

15|14 (13 |12(11|10|9 6 [5(4(3|2|1 |0
WA (19 or ZO)BCD CODE Years
W2 MOﬂth(Ol"‘lZ)BCDCODE Dat9(01~31)BCDc0DE

162

[EXAMPLE]

| | 40001
10001 | DGET

[DESCRIPTION]

When contact 10001 is energized, the system date is copied to registers 40001and 40002 in BCD
format. Assume that the date reads:

(40001)= 1996

(40002)= 09184
Then the date is Sept. 18th, 1996.

163

DSET

DSET SET CALENDAR DATE 1
SYMBOL.: OPERANDS:
0(1|3|4|C|P|L
I,— TOP —O0O TOP O 0O
DSET
I, — 702
Description:

This function is used to set the system date. The date is stored in the top node (two words).

The high byte of the first word represents year; the low byte of the first word represents month, the high
byte of the second word represents date in a month; and the low byte of the second word represents day in
a week. All numbers are in BCD format.

Input control (1) is used to determine whether this function block is to be executed or not.

Function outputs can be used to determine whether the function block has been executed.

Node Description:

TOP: Date, two words.

Input Control:

l.: When 1 [s presented,
the instruction is executed.

Function Output:

01:|1
02:0

164

[EXAMPLE]

I I 40001
10001 DSET

[DESCRIPTION]

When contact 10001 is energized, the data stored in registers 40001and 40002 are used to set
the system date.
If (40001) = 19964

(40002) = 09184

the setting date is Sept 18th, 1996.

165

DCMP

DCMP CALENDAR DATE COMPARE T 1 1

SYMBOL.: OPERANDS:

— TOP — 0 TOP Oo|0

I, — DCMP — O,

I; —| BOTTOM[O3 BOTTOM 0]

®0~65535

Description:
This function is used to compare the system date with the reference date stored in the top node. (For data

storage format, please refer to DGET or DSET functions.) The bottom node defines the MASK for
comparison.
Input control (1) is used to determine whether this function block is to be executed or not.

Node Description:

TOP: Reference date, two words.

BOTTOM: MASK. This word is divided into three nibbles. Each nibble corresponds to the portion of
the Year, Month, and Date respectively. If a corresponding nibble is zero, then that
portion is ignored during comparison.

Input Control:

I:: When Q_L ﬂ) is presented, the instruction is executed.

Function Output:
O,: Reference date > System date.

0O,: Reference date = System date.
Os: Reference date < System date.

166

[EXAMPLE]

—1 |— 40001 —)
10001 00001
DCMP ——()
00002

#0111h ——()
00003

[DESCRIPTION]

When contact 10001 is energized, the reference date stored registers 40001, and a constant
0111h is compared against the system date for any difference.
If the bottom node is represented by X, X, X3, X4 (hex format) then

Xo: reserve

Xi: nibble mask for the Year

X,: nibble mask for the Month

Xs: Date

Assume the system date is Sept. 18th, 1996, and
40001=19964
40002=09174
Bottom mode =0111, - (Day comparison is suppressed.)
Since the reference date (17) is smaller than the system date (18), thus, coil 00003 is
turned "ON’.

Note: The date comparison is made according to the following order:
Year->Month->Date
If any difference is found while comparing the higher ranked unit, the function output is set
based on the comparison result, and the rest of the data is ignored.

167

TGET

TGET GET SYSTEM TIME] F
SYMBOL.: OPERANDS:
0[1[3|]4|C|P|L
TGET
|2 T [02

Description:
This function is used to obtain the system time. The result is stored in the top node (two words).

The high byte of the first word represents day in a week; the low byte of the first word represents hour, the
high byte of the second word represents minute; and the low byte of the second word represent second. All
numbers are in BCD format.

Input control (I;) is used to determine whether this function block is to be executed or not.

Node Description:

TOP: Register to store the system time.

Input Control:

l.: When (1 [)is presented,

the instruction is executed. 15/ 14/ 13[12/11{ 10/ 91 8] 7[6]5[413|2[1]0
W, Day in a week(01~07)gco Hour(00~23)sco
W, Minute (01~59)gco Second (00~59)gco
Function Output:
O:=ly
0,=0

168

[EXAMPLE]

| | 40001
10001 TGET

[DESCRIPTION]

When contact 10001 is energized, the system time is copied to registers 40001and 40002 in BCD
format. Assume that the time reads:

(40001)= 0212gcp

(40002)= 23455cp

Then the system time is Tuesday, 23 minutes 45 seconds past 12 o’clock.

169

TSET

TSET SET SYSTEM TIME L
SYMBOL.: OPERANDS:
0(1|3|4|C|P|L
TSET
|2 T [02
Description:

This function is used to set the system time. The time is stored in the top node (two words).

The high byte of the first word represents day in a week; the low byte of the first word represents hour, the
high byte of the second word represents minute; and the low byte of the second word represents second.
All numbers are in BCD format.

Input control (I;) is used to determine whether this function block is to be executed or not.

Function outputs can be used to determine whether the function block has been executed.

Node Description:

TOP: Register to set the system time, 2 word format as follows :

Input Control:

I When T | is presented,

the instruction is executed. 15| 14| 13| 12 11 10| 9| 8| 7|65 (4 (3|2|1]| 0
W, | Day in a week(01~07)gcp Hour (00~23)gcp
W2 DatE(Ol"‘31)BCD Second (OO~59)BCD

Function Output:

01:|1
02:0

170

[EXAMPLE]

| | 40001
10001 TSET

[DESCRIPTION]

When contact 10001 is energized, the data stored in registers 40001and 40002 are used to set
the system time.
If (40001) = 0212 gcp
(40002) = 2345 gcp
The setting date is Tuesday, 23 minutes and 45 seconds past 12 o’clock.

171

TCMP

TCMP TIME COMPARE 11
SYMBOL: OPERANDS:
0[1]3]4 P|L
,— TOP | O TOP olo
l, — TCMP |— O, MIDDLE
I, — BOTTOM — O BOTTOM 0
[0~65535

Description:
This function is used to compare the system time with the reference time stored in the top node. (For data

storage format, please refer to TGET or TSET functions.) The bottom node defines the MASK for
comparison.
Input control (1) is used to determine whether this function block is to be executed or not.

Node Description:

TOP: Reference time, two words.

BOTTOM: MASK. This word is divided into four nibbles. Each nibble corresponds to the portion of the
Week, Hour, Minute, Second respectively. If a corresponding nibble is zero, then that portion
is ignored during comparison.

Input Control:

l: When | | (f [)is presented, the instruction is executed.

Function Output:
Os: Reference time > System time

0O,: Reference time = System time
Os: Reference time < System time

172

[EXAMPLE]

| — 40001 ——()
10001 00001

TCMP ()
00002

#1110h ——()
00003

[DESCRIPTION]

When contact 10001 is energized, the reference time stored in registers 40001, and a constant
1110h is compared against the system time for any difference.
If the bottom node is represented by X, X, X3, X4 (hex), then

Xi: nibble mask for the day in a WEEK

Xz: nibble mask for the HOUR

Xs: nibble mask for the MINUTE

X4: nibble mask for the SECOND

Assume the system time is Tuesday, 25 minutes 34 seconds past 7 o’clock, and
40001=0208gcp
40002=2536gcp
Bottom node =11104 - (Second comparison is suppressed.)
Since the reference hour (8) is larger than the system hour (7), thus, coil 00001 is turned "'ON’.

Note: The date comparison is made according to the following order:
Week->Hour->Minute ->Second.
If any difference is found while comparing the higher ranked unit, the function output is set
based on the comparison result, and the rest of the data is ignored.

173

STAT

STAT STATUS] 1
SYMBOL.: OPERANDS:
0[/1|3]4|C|P|L
MIDDLE
I, — STAT —0O, MIDDLE O O O
I; | BOTTOM [O3 BOTTOM 0
®0~63
01~64

Description:
This function is used to obtain the system status (configuration table)

Input control (1) is used to determine whether this function block is to be executed or not.

Function outputs can be used to determine whether the function block has been executed.

Node Description:

TOP: Address of the system configuration table where the read action is intended.
MIDDLE: Starting address of the register where the data is stored.

BOTTOM: Number of words to be read.

Input Control:

I:: When JL (ﬂ) is presented, the instruction is executed.

Function Output:

01:|1
O,=Read indicator

=1, if the read action is performed beyond the configuration table limit.
03:0

174

PLC STATUS Description:

Word Order Description
000 Reserved
001 Second Minute
002 Hour Day of a week
003 Month Date
004 Year Dummy byte
005 Maximum scan time, unit: 100 us
006 Minimum scan time, unit: 100 us
007 Current scan time, unit: 100 us
008 PLC Elapsed time since powered on (minute)
009 PLC Elapsed time since powered on(hour)
010 Run-time Status(1)
011 Self-diagnosis Status(2)
012 PLC link - group ID
013 PLC link - link flag
014 PLC link - real time response state
015 Drop used state

Detailed Description:

Word - 000: Reserved

Word-001 ~ Word - 004: System date and time.

Word-005: Maximum Scan Time, unit: 100 us

Word-006: Minimum Scan Time, unit: 100 us

Word-007: Current Scan Time, unit; 100 us

Word-008 : Elapse time since powered on (minute)

Word-009 : Elapse time since powered on (hour)

Word-010 ~ Word - 011: Run-time and Self-diagnosis:

a .Word-010: Self-diagnosis Status(1)

175

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

bit00: RAM checksum error
bit01: Real time timer error
bit02: Watch dog timer error
bit03: Status RAM fail
bit04: Ladder RAM fail
bit05: Remote 1/0 module fail
bit06: Battery low

bit07: Ladder error

bit08: 1/0 map error

bit09: reserve

bitl2: reserve

bit13: reserve

bitl4: Local I/0 module fail

b. Word - 011: Self-diagnosis Status(2)
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

BB,
bit00: Local 1/0O mismatch

bit01: Installed 1/0 points are over the system limitation
bit02: Remote 1/0O mismatch

bit04: Ladder syntax error

bit05: Rack I/0 mismatched

bit06 ~ bitl5: Reserved

Word-012 : Group ID (Hexadecimal) for PLC link

Word-013 : Link flag map of master station
Bit1 to Bit15 are corresponding to the slave station #1 to station #15.
bit = “1” : The corresponding slave station is required to be linked.
bit = 0’ : The corresponding slave station is not required to be linked.

Word-014 : PLC link-linking status

Bitl to Bit15 are corresponding to the slave station #1 to station #15

bit = ‘1’ : Link normal, the corresponding station is required to be linked.

bit = “0’ : Link abnormal, the corresponding station is not required to be linked.
Word-015 : Communication status of the remote drops

Bitl to Bit 15 are corresponding to the drop #1 to drop #15.

Bit = ‘1’ the corresponding drop has occurred communication error.

176

CHAPTER 6: OTHERS

CAM

CAM CAM SWITCH J‘—L

SYMBOL: OPERANDS:
0O[1|3|4|C|P]|L
MIDDLE
l, — CAM | —0O, MIDDLE @) @)
I; — BOTTOM— O3 BOTTOM |O @)
®0~65535

Description:

This function is similar to a 16-contact stepping switch. The source register (defined in the TOP node) is

compared against the table formed by 32 target registers (16 sets in total, defined in the middle node), and

the corresponding bit is set to ‘ON’ in the bottom node.

Input control (1) is used to determine whether this function block is to be executed or not.

Remark: The restriction of the middle node is that the content of the first register must be hero than the
content of the second register for each pair.

Node Description:

TOP: Target register

MIDDLE: 16 pairs of data, 32 registers.

BOTTOM: Comparison result. (Assume that the top node is represented by W, and the middle node pair is
represented by Wo, W,)
= 11 if ((Wh)>=(Wo)) and ((Ws)<(Wh))

Input Control:

I:: When (1 |) ispresented, the instruction is executed.

Function Output:

01:|1
02:0
03:0

177

[EXAMPLE]

#00155
T1.0
40006

[DESCRIPTION]

The top node of the CAM switch is coming from a T1.0 timer register. It cycles from 0~155. The
CAM table is defined in the middle node. It starts from 0 and has an increment of 5. After
comparing the content of register 40006(for example 145) and the CAM table, this function sets
the 14" bit to on and returns 16384 to the bottom node. After 5 seconds, the 15" bit would be
“ON”. After another 5 seconds, the 1st bit would be ‘ON. This behavior is very similar to that of

40006
41000

CAM
40009

()
00006

A

a CAM switch.

40006 00145
40009 4000H
41000 00000
41001 00005
41002 00010
41003 00015
41004 00020
41005 00025
41006 00030
41007 00035
41008 00040
41009 00045
41010 00050
41011 00055
41012 00060
41013 00065
41014 00070
41015 00075
41016 00080
41017 00085
41018 00090
41019 00095
41020 00100
41021 00105
41022 00110
41023 00115
41024 00120
41025 00125
41026 00130
41027 00135
41028 00140
41029 00145
41030 00150
41031 00155

JuUuu ooy dyudyy

8 (40001

10

11 [0100000000000000

12

13 bit14=1

14

15

178

CDMR

CDMR COMMON DATA MEMORY READ 1
SYMBOL: OPERANDS:
,— TOP | O TOP
MIDDLE
I, | CDMR — O, MIDDLE
l, | BOTTOM — O BOTTOM

OPlease refer to the next page for detailed description.

01~64

Description:

This function block is used to read the common data memory from an intelligent module.
Input control (1) is used to determine whether this function block is to be executed or not.

Input control (I,) is used to reset this function.

Node Description:

TOP: Location of the intelligent module, please refer to the next page.

MIDDLE:3 words, please refer to the next page.
BOTTOM: Data length.
Input Control:

I When t 1 s presented, the function is executed.
I,: Reset

=1, Reset execution status.
Function Output:

O, : Execution status
=1, Executing
=0, non-executing
O,: Finishing status
=1, Finished
=0, not finished yet.
Oj3: Parameter status
=0, Parameter OK
=1, Parameter error.

179

TOP Node: Location of the intelligent module

The location of an intelligent module is defined via Drop.Rack.Slot. The range of Drop number is from 0
to 15. The range of Rack number is from 1 to 4. The Range of Slot number is from 1 to 8.

Middle Node: Common Data Memory

b15|b14[b13|b12| bl |b10|b09|b08|b07|b06 |b0O5 |b04 [b03 [b02 |b01|b00O
word 1 Intelligent module address offset
word 2 Reserved N3 N2 N1
word 3 Target address

Word 1: Intelligent module CDM data address offset

Word 2: Reserved.

Word 3: Target data starting address of the register for store data after read from CDM . This address is
mapping to 4xxxx registers. For example, if word3 = 00010, then the data is stored starting
from register 40010.

180

[EXAMPLE]
To read the first 10 words in PAGEO of the common data memory for an A/D module installed at Rack 2,
Slot 4, and store the result in registers 40100~40109, set the middle node as follows:

(40001)=0000, (40003)=0100.

P

0O C I I I I I

W P ! ! { f ! !
| E u O 0| 0 Q| o0 O
| R

P

0 I I A I

W ! ! f ! ! !

E 0O O o D O 8]

R

Ladder program:

{ % #00024 | ()
10001 00001
40001 — ()

CDMR 00002

#00010 |—()

00003

[DESCRIPTION]
Assume that (40001)=0000, and (40003)=100; when there is an OFFJON transition for
contact 10001, the CDMR function is executed. During execution, coil 00001is ’ON’. After
execution, coil 00001 = coil 00003 = ‘OFF’, and coil 00002 = ‘ON”.

181

CDMW

CDMW COMMON DATA MEMORY WRITE ks
SYMBOL: OPERANDS:
1, TOP O, TOP
MIDDLE
1, CDMW — O, MIDDLE
I, | BOTTOM | O BOTTOM

®Please refer to the next page for detailed description.

01~64

Description:

This function block is used to write the common data memory from an intelligent module.
Input control (1) is used to determine whether this function block is to be executed or not.

Input control (I,) is used to reset this function.

Function outputs can be used to determine whether the function block has been executed.

Node Description:

TOP: Location of the intelligent module, please refer to the next page.

MIDDLE:3 words, please refer to the next page.
BOTTOM: Data length.
Input Control:

l.: When f | s presented, the function is executed.
I,: Reset

=1, Reset execution status.
Function Output:

O, : Execution status
=1, Executing
=0, non-executing
O,: Finishing status
=1, Finished
=0, not finished yet.
Oj3: Parameter status
=0, Parameter OK
=1, Parameter error.

182

TOP Node: Location of the intelligent module

The location of an intelligent module is defined via Drop.Rack.Slot. The range of Drop number is from 0
to 15. The range of Rack number is from 1 to 4. The range of Slot number is 1 to 8.

Middle Node: Common Data Memory

b15|b14[b13|b12| bl |b10|b09|b08|b07|b06 |b0O5 |b04 [b03 [b02 |b01|b00O
word 1 Intelligent module address offset
word 2 Reserve N3 N2 N1
word 3 Target address

Word 1: Intelligent module address offset
Word 2: Reserved.

Word 3: Source data starting address of the register for copy data to CDM . This address is mapping to

4xxxx registers. For example, if word3 = 00010, then the data is transferred to the intelligent
module starting from register 40010.

183

[EXAMPLE]
To read the 10 words data in registers 40100~40109 and write to PAGEOQ of the common data memory for

an A/D module installed at Rack 2, Slot 4, set the middle node as follows:
(40001)=0000, (40003)=0100.

P
o | C I (1 | I |1 |1
w | Pt
| E T |o|jo|]Oo] O 0| O
Il R
| P
0 I |1 | A I
w | foh e f
T | O |0 0| D| O] D
R

{ % #00024 ——()
10001 00001
40001 ——()
CDMW 00002

#00010 ()

00003

[DESCRIPTION]
Assume that (40001)=0000, and (40003)=100; when there is an OFFJON transition for

contact 10001, the CDMW function is executed. During execution, coil 00001is ’ON’. After
execution, coil 00001 = coil 00003 = ‘OFF’, and coil 00002 = ‘ON”.

184

PID

PID PID Control 1
Symbol Operands
I, Top O Top
Middle
I, PID 0, Middle
I3 Bottom | O3 Bottom

Descriptions:
This function block calculate the difference between the present value and the set-point, and produce

control signal to minimize the difference via PID calculation.

Nodes:

Top: PID function parameters. Please see the next page.

Middle: Working Area and Status area for PID function. Please see the following page.
Bottom: Cycle time for PID Function, unit: 1/10 sec.

INPUT:
I,:Auto/Manual Mode
=1, Output is controlled by PID function, =0, Output is obtained from manual input.
Error detecting is still enabled.
I,: Bumpless transition during Manual to Auto mode switching.
= 1, Bumpless transition enabled, = 0, Bumpless transition disabled.
I5 : Direct/Reverse Mode
=1, Decrease Output as Error increases. =0, Increase Output as Error increases.

OUTPUT:

O;: =1, if there is any parameter error.

0,: =1, if the present value (scaled PV) is higher than the high alarm limit.
O3: =1, if the present value (scaled PV) is lower than the low alarm limit.

Description:

185

PID Control Loop:

PID Function Block

op i e PID MV | output | Target
4xxx2 ¢t Calculation | 4xxx3 Device Process
Scaled| :
v | & PV
o Scaling Raw ¥ 4xx14 | Sensor
4xxx1 - .

UER LER
4xx12 4xx13

PID formula:

IOE % [ﬂ(t)+li1jﬂ(t)dt+ Kp (dg?) J+Bias

Where:
MV (t) = Control Output

Pb = Proportional Band
e(t)= Error (Difference between Scaled PV and SP)
K, = Constant for Integration Term, or, reset time constant

Kp = Constant for Derivative Term, or, rate time constant
Bias = Correction Value, or offset to Output

TOP Node: Register: 4xxx1 ~ 4xx16

4xxx1: An internal register used to store the scaled PV in Engineering Unit.

Raw PV
Scaled PV = * (UER - LER) + LER
Sensor Range

Where: Raw PV: Obtained from the difference of Register 4xx14 and 4xx16.
UER : Upper bound of Engineering measurement Range
(See also Register 4xx12)

186

> PV

LER : Lower bound of Engineering measurement Range
(See also Register 4xx13)
Sensor Range: 4096. Assuming that an AD020 module is used to convert Raw PV signal

(0~10V) to digital data (0~65535), then the Raw PV must be divided by 16 first to maintain
consistency.

4xxx2: Set Point in Engineering Unit. (0~9999)

4xxx3: PID control output MV (0~4096). Please use a proper scaling factor to scale this control output
and then send to the Output Device.

In Auto Mode (I, =1), the data in this register is the result of PID calculation. In Manual Mode
(1, =0), filling this register by user is required.

4xxx4: High alarm limit in Engineering Unit (0~9999). This number should be greater than the Set
Point.

4xxx5: Low alarm limit in Engineering Unit (0~9999). This number should be less than the Set Point.

4xxx6: Proportional Band (Pb:5~500). The term Proportional Band is also referred to as the
“sensitivity”. The reciprocal of Pb is “Gain”. As seen from the PID formula, the “Gain” is the

proportional factor between “Error” and output MV. For example: if Pb=5, then MV is amplified
20 times.

4xxx7: Constant for Integration Term, or, Reset time Constant (K;: 0~9999). As seen from the PID
formula, the K, represents the contribution of the Integral. If K, = 0, then this function block
becomes a PD function block.

4xxx8: Constant for Derivative Term, or, Rate time Constant (Kp: 0~9999). As seen from the PID
formula, the Kp represents the contribution of the Derivative. If Kp = 0, then this function block
becomes a PI function block. If both K, = 0 and Kp = 0, then this function block becomes a
proportional control function block.

4xxx9: Bias, Correction Value, or offset to Output (0~4095).

4xx10: High integral wind-up limit, or, upper bound of output. Usually this value is set at 4095.

4xx11: Low integral wind-up limit, or, lower bound of output. Usually this value is set at 0000.

4xx12: Upper bound of Engineering Range (0001~9999). Specify the upper limit of the sensor output in
Engineering Unit in this register. For example, a RTD10 module produce unsigned digital data

1500 ~7500 for temperature 0°C ~600°C, then specify 600 for this register. This number should

187

be greater than the Set Point.

4xx13: Lower bound of Engineering Range (0000~9998). Specify the lower limit of the sensor output in
Engineering Unit in this register. For example, a RTD10 module produce unsigned digital data
1500 ~7500 for temperature 0°C ~600°C, then specify 0000 for this register. This number should

be less than the Set Point.
4xx14: Raw PV. Move the data from the output PV sensor to this register. (See also Register 4xx16)

4xx15: Internal Register for storing the status of “Auto” or “Manual” mode. If the content of this
register is 11(Hex), the PID function block is in Manual mode. If 55(Hex), Auto mode.

4xx16: Correction value for Row PV. (0~4096). Specify a correction value in this register. This value is
subtracted from the Raw PV (obtained from Register 4xx14), and the result is then used in the
calculation of Register 4xxx1.

Middle Node: Register 4yyyl~4yyyy5
4yyy1: PID function Block Status.

Bit 1: =1, if there is any parameter error.

Bit 2: =1, if High Alarm limit is exceeded.

Bit 3: =1, if Low Alarm limit is exceeded.

Bit 4 ~ Bit 5: Reserved.

Bit 6: =1, if PID function Block is in “Auto” mode and computing.
Bit 7 ~ Bit 12: Reserved.

Bit 13: =I5
Bit 14: =I,
Bit 15: =I,

Bit 16: Reserved.

4yyy2: Internal Register for PID Loop timer.

4yyy3: Internal Register for storing High order integral summation.

4yyy4: Internal Register for storing Low order integral summation.

4yyy5: Internal Register for storing Scaled PV used in the previous scan.
Bottom Node: Cycle time, unit: 1/10 sec. 00010 stands for one second.

Example:

188

Sp —+>O—e—> PID MV | DA020 .| Extruder
4xxx2 4 Calculation | 4xxx3 Barrel
Scaled
PV 1. PO RTD10
P\ . < (O«
Scaling Raw 1 4xx14
4xxx1 -]
PV :
UER LER
4xx16
4xx12 4xx13

189

> PV

40001 40001: Obtain from RTD module
40002
40002: 1770(Hex)=6000 (=7500-1500) ,
DVB Data range for 0~600°C
40003 40003: Quotient
40003
40004: 1000(Hex)=4096, Sensor Range
40004
MLB 40005: Product, Raw PV
40005
40005 Move Raw PV to PID’s TOP node
#0000 Register 41014.
ADDB [41001
41014 41002: 0220°C, processing temperature
for HDPE
41003: Control Output (MV)
41004: 0250°C, High Alarm Limit
41001 41005: 0200°C, Low Alarm Limit
41021 41006: 0200, Proportional Band
41007: 0300, Kl
PID
400020 41008: 0000, thus, PI control only.
41009: 0000, Bias
41010: 4095, upper bound of MV
41011: 0000, lower bound of MV
41012: 0600°C, UER
41013: 0000°C, LER
41014: Raw PV
41003 41015: 0055, Auto mode

#0000 \ 41016: 0000, Correction for Raw PV

Bottom Node: Cycle time, 2 sec.
ADDB

40006 Move PID output to DA020 module

190

