Preface

PV500 special inverters are developed for power supply of water pumps, based on the core control arithmetic of FR500 vector control inverters, combined with the control requirements of PV water pump application. The function of maximum power tracking, dormant at weak light, wake up at strong light, high water level dormant, under-load pre-warning and other control protection functions can ensure normal operation of water pumps according to the customers' requirements to switch to the grid power supply.

Please refer to this manual to commission the inverter, product maintenance refer to FR500 user manual.

IMPORTANT NOTES

◆To illustrate the details of the products, pictures in this manual based on products with outer casing or safety cover being removed. When using this product, please be sure to well install outer casing or covering by the rules, and operating in accordance with the manual contents.

◆ The illustrations in this manual are for illustration only and may vary with different products you have ordered.

◆ The company is committed to continuous improvement of products, product features will continue to upgrade, the information provided is subject to change without notice.

♦ If there is any questions when using, please contact our regional agents or our customer service center:(+86-0755-88605930)

For other products, please visit our website. http://www.frecon.com.cn

Contents

PREFACE	1 -
CONTENTS	3 -
CHAPTER 1 PRODUCT OVERVIEW	
1.1 Name Plate 1.2 Product Specifications	5 -
1.3 DIMENSION DRAWING CHAPTER 2 COMMISSIONING GUIDE	11 -
2.1 PV PANEL POWER SUPPLY COMMISSIONING	
2.2 GRID OR GENERATOR POWER SUPPLY WIRINGS	
2.3 WIRING DIAGRAM BETWEEN FRECON VFD AND SINGLE PHASE MOTOR 2.4 PRODUCT TERMINAL CONFIGURATION	
CHAPTER 3 FUNCTION PARAMETERS	33 -
3.1 THE BASIC FUNCTION PARAMETERS 3.2 H00 GROUP: DETAILED EXPLANATION OF FUNCTION CODE	
CHAPTER 4 TROUBLESHOOTING AND COUNTERMEASURES	66 -

Chapter 1 Product Overview

1.1 Name Plate

Figure 1-1 Name Plate

Model Instruction

Model numbers on name plate consist of numbers, symbols, and letters, to express its respective series, suitable power type, power level and other information.

1.2 Product Specifications 1.2.1 Electric specification of AC110V Input product Table 1-1Electric specification of AC110V Input product

	Recommend	Maximum	Rated Input	Rated	
	ed Solar	Input DC	AC Current	Output	Adaptive
Model	Power (kW)	Current (A)	(A)	Current (A)	Motor (kW)
PV150A-1S-0.7B	0.4	7.5	9.3	4.2	0.25
PV150A-1S-1.5B	0.6	10.6	15.7	7.5	0.4
PV150A-1S-2.2B	1.0	10.6	24	9.5	0.75

Input specification		
PV Input		
Maximum Input DC Voltage	450VDC	
Recommended Voc Range	170~300VDC	
Recommended MPPT Voltage Range	140~240VDC	
Operation Voltage Range	70~450VDC	
Grid or backup genera	tor input	
Input voltage 1PH 110V(-15%~30%)		
	Output specification	
Rated output voltage	3PH 110V	
Output frequency 0~600.00Hz (default: 0~50.00Hz)		
	Protection	
Built-in Protection Lighting Protection, over-current, overvoltage, output phase-lose, under-load, under-voltage, short circuit, overheating, water pump run dry etc.		

PV500&PV150A Series Solar Pumping Inverter 1.2.2 Electric specification of AC220 Input product

	Recommen	Maximum	of AC220 Input pr Rated	Rated	Adaptive
Model	ded Solar	Input DC	Input AC	Output	Motor
	Power (kW)	Current (A)	Current (A)	Current (A)	(kW)
PV150A-2S-0.4B	0.6	10.6	6.5	2.5	0.4
PV150A-2S-0.7B	1.0	10.6	9.3	4.2	0.75
PV150A-2S-1.5B	2.0	10.6	15.7	7.5	1.5
PV150A-2S-2.2B	2.9	10.6	24	9.5	2.2
PV500-2T-4.0B	5.2	21.1	18	17	4.0
PV500-2T-5.5B	7.2	31.7	26.5	25	5.5
PV500-2T-7.5B	9.8	42.2	33.5	32	7.5
PV500-2T-011B	14.3	63.4	47.5	45	11
PV500-2T-015B	19.5	95.0	63	60	15
PV500-2T-018	24.1	116.2	79	75	18
PV500-2T-022	26.8	137.3	96	91	22
PV500-2T-030	39	169.0	118	112	30
PV500-2T-037	48.1	232.3	158	150	37
PV500-2T-045	58.5	274.6	185	176	45
PV500-2T-055	71.5	337.9	221	210	55
PV500-2T-075	97.5	401.3	263	250	75

Table 1-2Electric specification of AC220 Input product

Input specification			
PV Input			
Maximum Input DC Voltage	450VDC		
Recommended Voc Range	360~430VDC		
Recommended MPPT Voltage Range 250~350VDC			
Operation Voltage PV150A: 70~450VDC Range PV500: 230~450VDC			
Grid or backup generator input			

		2S: 1PH 220V(-15%~20%) 2T: 3PH 220V(-15%~20%)			
	Output specification				
Rated output voltage 3PH 220V					
Ou	utput frequency	0~600.00Hz (default: 0~50.00Hz)			
	Protection				
Built-in Protection Lighting Protection, over-current, overvoltage, output phase-los under-load, under-voltage, short circuit, overheating, water pur run dry etc.					

1.2.3 Electric specification of AC 380V&DC 540V Input product Table 1-3 Electric specification of AC 380V&DC 540V Input product

	Recommen	Maximum	Rated Input	Rated	
Model	ded Solar	Input DC	AC Current	Output	Adaptive
	Power (kW)	Current (A)	(A)	Current (A)	Motor (kW)
PV150A-4T-0.7B	1.0	10.6	3.4	2.5	0.75
PV150A-4T-1.5B	2.0	10.6	5	4.2	1.5
PV150A-4T-2.2B	2.9	10.6	5.8	5.5	2.2
PV150A-4T-4.0B	5.2	10.6	11	9.5	4
PV500-4T-4.0B	5.2	10.6	11	9.5	4
PV500-4T-5.5B	7.2	21.1	14.6	13	5.5
PV500-4T-7.5B	9.8	21.1	20.5	17	7.5
PV500-4T-011B	14.3	31.7	26	25	11
PV500-4T-015B	19.5	42.2	35	32	15
PV500-4T-018B	24.1	52.8	38.5	37	18.5
PV500-4T-022B	28.6	63.4	46.5	45	22
PV500-4T-030B	39.0	95.0	62	60	30
PV500-4T-037	48.1	116.2	76	75	37
PV500-4T-045	58.5	137.3	92	91	45
PV500-4T-055	71.5	169.0	113	112	55
PV500-4T-075	97.5	232.3	157	150	75
PV500-4T-090	117.0	274.6	186	176	90
PV500-4T-110	143.0	337.9	220	210.0	110
PV500-4T-132	171.6	401.3	260	253.0	132

PV500&PV150A Series Solar Pumping Inverter

PV500-4T-160	208.0	485.8	310	304.0	160
PV500-4T-185	240	559.7	355	350.0	185
PV500-4T-200	250	612.5	382	377.0	200
PV500-4T-220	286.0	675.8	430	426.0	220
PV500-4T-250	325.0	760.3	475	470.0	250
PV500-4T-280	364.0	855.4	535	520.0	280
PV500-4T-315	409.5	961.0	610	600.0	315
PV500-4T-355	461.5	1087.7	665	650.0	355
PV500-4T-400	520.0	1225.0	785	725.0	400
PV500-4T-450	585.0	1372.8	865	800.0	450

Input specification				
PV Input	PV Input			
Maximum Input DC Voltage	800VDC			
Recommended Voc Range	550~750VDC			
Recommended MPPT Voltage Range	450~600VDC			
Operation Voltage Range	230~800VDC			
PV Input (HV : High vol	tage)			
Maximum Input DC Voltage	900VDC			
Recommended Voc Range	550~850VDC			
Recommended MPPT Voltage Range	450~600VDC			
Operation Voltage Range	230~900VDC			
Grid or backup generator input				
Input Voltage 3PH 380V(-15%~30%)				
Output specification				
Rated output voltage	3PH 380V			
Output frequency	0~600.00Hz(Default 0~50.00Hz)			

Protection			
Built-in Protection	Lighting Protection, over-current, overvoltage, output phase-lose, under-load, under-voltage, short circuit, overheating, water pump run dry etc.		
	General Parameters		
Application Site	No direct sunshine, no dust.corrosive gas.combustible gas.oil mist. steam. dripping or salinity etc.		
Altitude	0~2000 m Derated use above 1000m,per 100m, the rated output current decrease 1%.		
Environment Temperature	-10 $^\circ C \sim$ 40 $^\circ C$ (Environment Temperature be 40 $^\circ C \sim$ 50 $^\circ C$, please keep derated use.)		
Humidity	5~95%,non-condensation		
Vibration less than 5.9 m/s ² (0.6g)			
Storage Temperature	-20℃~+70℃		
Efficiency	Rated Power Run≥93%		
Installation	Wall or rail mounting		
Protection Grade	IP20		
Cooling	Forced Air Cooling		

1.2.4 Electric specification of PV150I series

Table 1-4 Electric specification of PV150I series

	Recommended	Maximum	Rated	Rated	
Model	Solar Power	Input DC	Input AC	Output	Adaptive
	(kW)	Current (A)	Current (A)	Current (A)	Motor (kW)
PV150I-2S-0.4B	0.6	10.6	5.3	4.2	0.4
PV150I-2S-0.7B	1.0	10.6	9.4	7.5	0.75
PV150I-2S-1.5B	2.0	10.6	13.1	10.5	1.5
PV150I-2S-2.2B	2.9	21.1	21.3	17	2.2
PV150I-2S-4.0B	5.2	31.7	31.3	25	4
PV150I-2S-5.5B	7.2	42.2	40.0	32	5.5

Input specification		
PV Input		
Maximum Input DC Voltage	450VDC	

PV500&PV150A Series Solar Pumping Inverter

1000 V 100A Selles 300	
Recommended Voc Range	360~430VDC
Recommended MPPT Voltage Range	250~350VDC
Operation Voltage Range	70~450VDC
Grid or backup generat	or input
Input voltage	1PH 220V(-15%~20%)
	Output specification
Rated output voltage	3PH 220V
Output frequency	0~600.00Hz (default: 0~50.00Hz)
	Protection
Built-in Protection	Lighting Protection, over-current, overvoltage, output phase-lose, under-load, under-voltage, short circuit, overheating, water pump run dry etc.

1.3 Dimension Drawing

1.3.1 PV150A

Fig 1-3 Product size chart

			Extern	al and	installa	tion di	mensio	ns (mm)		
Model	W	н	D	W1	H1	H2	H3	Install hole d1	Install hole d2	N.W (kg)
PV150A-1S-0.7B	75									
PV150A-2S-0.2B										
PV150A-2S-0.4B		150	120	65	140	35	5 38.5	4.5	4.5	0.95
PV150A-2S-0.7B	75	150	120			55				0.95
PV150A-4T-0.7B										
PV150A-4T-1.5B										
PV150A-1S-1.5B										
PV150A-1S-2.2B								4.5	4.5	
PV150A-2S-1.5B	93	171	132	82	160	35	39			1.46
PV150A-2S-2.2B	93	171	132	02	100	35	39	4.5	4.5	1.40
PV150A-4T-2.2B										
PV150A-4T-4.0B										

Table 1-6 Configuration,	mounting dimensions and weight

1.3.2 PV500

♦4~22kW Dimensions and wall mounting dimensions

Figure 1-4 4~22kW Wall Installation Diagram

♦30~450kW Dimensions and installation dimensions

Figure 1-5 30~450kw Wall Mounting Diagram

Table	1-6 Configui Ext		-	on dimen	-		
	EXI		installall				Weight
Model NO.	W	W1	Н	H1	D	Mounting Hole Diameter	(Kg)
3-F	hase:380V	, 50/60⊢	lz Ran	ge:-15%~	~+30%		
PV500-4T-0.7B							
PV500-4T-1.5B	80	60	200	190	150	6	1.25
PV500-4T-2.2B							
PV500-4T-4.0B	116.6	106.6	186.6	176.6	175	4.5	2.5
PV500-4T-5.5B	110.0	100.0	100.0	170.0	175	4.5	2.5
PV500-4T-7.5B	146	131	249	236	177	5.5	3.9
PV500-4T-011B	140	101	243	200	177	0.0	0.0
PV500-4T-015B							
PV500-4T-018B	198	183	300	287	185	5.5	6.2
PV500-4T-022B							
PV500-4T-030B	245	200	410	391	200	7	11.8
PV500-4T-037B							
PV500-4T-045	275	200	470	451	215	7	15
PV500-4T-055							
PV500-4T-075	310	200	620	601	262	9.5	26
PV500-4T-090	010	200	020	001	202	0.0	20
PV500-4T-110							
PV500-4T-132	400	300	750	724	300	11.5	68
PV500-4T-160							
PV500-4T-185							
PV500-4T-200	500	300	855	822	370	12	112
PV500-4T-220							
PV500-4T-250	540	340	924.5	896	380	12	120
PV500-4T-280	340	540	324.3	090	300	12	120
PV500-4T-315	620	400	996	963	390	12	133
PV500-4T-355	020	-00	330	303	530	12	100
PV500-4T-400	700	500	1025.	988.5	390	14	195
PV500-4T-450	100	500	5	300.5	550	די	135

Table 1-6 Configuration, mounting dimensions and weight

1.3.3 PV150

• Dimensions and wall mounting dimensions

Figure 1-7 Product size chart

		External and installation dimensions (mm)								
Model	W	Н	D	W1	H1	H2	H3	Install hole d1	Install hole d2	N.W (kg)
PV150I-2S-0.4B	75	150	117	65	140	35	38.5	4.5	4.5	1.1
PV150I-2S-0.7B	93	171	130	82	160	35	39	4.5	4.5	1.5
PV150I-2S-1.5B	93	171	130	02	160	35	29	4.5	4.5	1.5
PV150I-2S-2.2B	117	187	160	102	172	-	-	4.7	4.7	2.5
PV150I-2S-4.0B	146	249	174	131	236	-	-	5.5	5.5	3.9
PV150I-2S-5.5B	198	300	182	183	287	-	-	5.5	5.5	6.2

Table1-6 Configuration, mounting dimensions and weight

Chapter 2 Commissioning Guide

2.1 PV Panel Power Supply Commissioning

• Wiring drawings of PV500 series.

Figure 2-1 PV500

Wiring drawings of PV150A series.

Figure 2-2(b) PV150A(4T, new design)

Figure 2-2(c) PV150A(4T, old solution)

Wiring drawings of PV150I series.

Figure 2-2(d) PV150I

Commissioning steps:

1. Please wirings as Figure2-1&Figure2-2 according to different inverter powers, check and confirm the wirings to be correct, and then close Q1.

2. Setting the Motor Parameters

Setting the parameter of name plate on motor F08.01~F08.05.

3. Testing the water yield of pump

Press the operation key "RUN", under normal circumstance of light strength, if the operation

- frequency low or water yield less, which means the motor wiring may be reversed, please exchange two wirings of motor.
- 4. System Effluent Speed PI Regulating

If the user has a high requirements for the effluent speed, PI parameters can be regulated appropriately (H00.09~H00.10), the larger PI parameter, the stronger affection, the faster effluent, but the larger fluctuation of motor frequency; Otherwise, the slower water effluent, the more steady frequency of motor operation.

5. MPPT Tracing Speed Commissioning

H00.04 and H00.05 are respectively the lowest voltage and highest voltage under the MPPT mode, the smaller the range between them two, the faster tracing the maximum power, but the premise if that the bus voltage during normal operation must fall within this range, or the maximum power point may not be tracked. Generally speaking, the factory default value is OK.

6. Setting of fault point and fault delay reset time

If clients need to use the pre-warning of weak light, water-logged, under-load, failure monitoring point, delay time and reset time, water-logged/controlled function can be set as H00.15~H00.19 on demand; under-load function set as H00.20~H00.22; weak light function set as H00.13~H00.14. Users also can adopt the default value.

7. Parameter setting after the system operation normally

When the water yield is normal, and system run steadily, the commissioning will be finished. And then setting F02.00=1, change to terminal operation mode, setting failure auto reset times F11.27=5.

2.2 Grid or Generator power supply wirings

• Wiring drawings of PV500 series.

Figure 2-3 PV500 Grid or Generator Power Supply Wiring Diagram

• Wiring drawings of PV150A series.

Figure 2-4(a) PV150A(2S)

Figure 2-4(b) PV150A(4T, new design)

Figure 2-4(c) PV150A(4T, old solution)

Wiring drawings of PV150I series.

Figure 2-4(d) PV150I

- 1. Wirings as Figure2-3&Figure2-4 system wiring drawings according to inverters power, check and confirm the connections to be correct.
- 2. Disconnect the switch Q1, and then close Q2, switch to grid or diesel engine power; disconnect Q2, and then close Q1, switch to PV power supply.
- 3. When grid or generator power supply, setting H00.01=0, power supplied by grid.
- 4. For water pump's frequency, please refer to F01 group code, H00.02~H00.12 function code does not work.
- When change to PV power supply, setting F04.1=38 and close the terminal DI2 (or setting H00.01=1).

NOTE:

When the bus input terminal does not install the diode protection, PV panel switch Q1 will be prohibited to close together with grid power input switch Q2, or the panel will be damaged.

2.3 Wiring diagram between FRECON VFD and single phase motor

2.3.1 Single phase motor introduction

Single phase motor generally means asynchronous single phase motor powered by single phase AC 220V, there're two phase winding in motor stator and motor rotor is common squirrel cage. The distribution of two phase winding and different power supply will lead to different starting characteristics and operating characteristics

Usually single phase motor is with single capacitor or double capacitor, photos of motor are as below:

Figure 2-5 Motor with single capacitor and double capacitor

Single phase motor is consisted of main winding, secondary winding, capacitor and centrifugal switch, internal wiring of single phase motor with single capacitor is as below:

Figure 2-6 Operation mode: Internal wiring of motor with single capacitor

Figure 2-7 Starting mode: Internal wiring of motor with single capacitor

Internal wiring of single phase motor with double capacitors is as below:

Figure 2-8 Internal wiring of motor with double capacitors

Resistor starting mode single phase motor, and internal wiring is as below:

Figure 2-9 Resistor starting mode: Internal wiring of motor

We can remove capacitors from above motors, and remaining 4 main and secondary winding terminals as below:

Figure 2-10 Main and secondary winding of motor

2.3.2 Wiring between VFD and motor (Capacitor removable)

Connect main and secondary winding of motor to inverter UVW, then inverter can work. But due to the motor winding difference, motor forward wiring must be as below, if not cause motor too heat

Figure 2-11 Forward wiring of PV150A & PV150I (<2.2kW)

Motor reverse can't be completed through parameter setting of inverter or change any two phase wirings, motor reverse wiring must be as below:

Figure 2-12 Reverse wiring of PV150A & PV150I (<2.2kW)

Motor forward and reverse wiring of 0.75Kw/220V PV500 is same with PV150A, and wiring of PV500 above 1.5kW are as below:

Figure 2-13 Forward wiring of PV500 & PV150I (≥2.2kW)

PV500&PV150A Series Solar Pumping Inverter

Figure 2-14 Reverse wiring of PV500 & PV150I (≥2.2kW)

Note: After wiring completed, need to set F08.00=2.

2.3.3 Wiring between VFD and motor (Capacitor is not removable)

If the capacitor in motor is not removable, the wiring is as below. The forward and reverse is determined by VW wiring sequence.

Figure 2-15 Wiring between PV150A VFD and motor

Wiring of PV500 above 220V is as below. The forward and reverse is determined by UV wiring sequence.

Figure 2-16 Wiring between VFD PV500 and motor Note: After wiring completed, need to set F08.00=3

2.4 Product Terminal Configuration

2.4.1 PV150A Main Circuit Terminals

a: Single-phase Main Circuit Terminals (≤2.2kW)

Fig.2-17 Single-phase main circuit terminals (≤2.2kW)

b: Three-phase Main Circuit Terminals

♦New design:

Fig.2-18a Three-phase Main Circuit Terminals (new design)

♦Old solution

Fig.2-18b Three-phase Main Circuit Terminals (old solution)

2.4.2 PV500 Main Circuit Terminals

♦4~5.5KW Main Circuit Terminals

Fig.2-20 4~5.5kW Schematic of main circuit terminals

◆7.5~22KW Main Circuit Terminals

Fig.2-21 7.5~22kW Schematic of main circuit terminals

♦30~37KW Main Circuit Terminals

	Ð			Ð					
(+)	(-)	РВ	R	S	Т	U	V	W	
D	C	РБ	I	POWEF	۲.	1	иотоі	र	
· · · · · · · · · · · · · · · · · · ·									

Fig.2-22 30~37kW Schematic of main circuit terminals

◆45~90KW Main Circuit Terminals:

Fig.2-23 45~90kW Schematic of main circuit terminals

Fig.2-24 110~132KW , 250~280KW ,315~450KW Main Circuit Terminals

◆160~220KW Main Circuit Terminals:

Fig.2-25 160~220KW Main Circuit Terminals

2.4.3 PV150I Main Circuit Terminals

PV150I(0.4~1.5kW) Main Circuit Terminals

Fig.2-26 PV150I(0.4~1.5kW) Main Circuit Terminals

PV150I(2.2kW) Main Circuit Terminals

Fig.2-27 PV150I(2.2kW) Main Circuit Terminals

♦ PV150I4.0~5.5kW) Main Circuit Terminals:

Fig.2-28 PV150I(4.0~5.5kW) Main Circuit Terminals

Terminal marks	Designation and function of terminals.
R, S, T	AC power input terminals for connecting to 3-phase AC380V power supply.
L, N	AC220V power supply.
U, V, W	AC output terminals of inverter for connecting to 3-phase induction motor.
(+), (-)	Positive and negative terminals of internal DC bus.
. РВ	Positive and negative terminals of internal DC bus. Connecting terminals of braking resistor. One end connected to + and the other to PB.
	Grounding terminal.

Table 2-1 Main Circuit Terminal Functions

Remarks: No phase sequence requirements on wiring of the input side of inverter. Wiring Precautions:

1) Power input terminals R/L1, S/L2, T/L3

• The cable connection on the input side of the AC drive has no phase sequence requirement.

2) DC bus (+), (-)

◆ Terminals (+) and (-) of DC bus have residual voltage after the AC drive is switched off. After indicator CHARGE goes off, wait at least 10 minutes before touching the equipment Otherwise, you may get electric shock.

◆ Do not connect the braking resistor directly to the DC bus. Otherwise, it may damage the AC drive and even cause fire.

3) Braking resistor connection terminals (+), PB

◆ The cable length of the braking resistor shall be less than 5 m. Otherwise, it may damage the AC drive.

4) AC drive output terminals U/T1, V/T2, W/T3

• The capacitor or surge absorber cannot be connected to the output side of the AC drive. Otherwise, it may cause frequent AC drive fault or even damage the AC drive.

If the motor cable is too long, electrical resonance will be generated due to the impact of distributed capacitance. This will damage the motor insulation or generate higher leakage current, causing the AC drive to trip in overcurrent protection. If the motor cable is greater than 100 m long, an AC output reactor must be installed close to the AC drive.

5) Terminal PE

◆ This terminal must be reliably connected to the main earthing conductor. Otherwise, it may cause electric shock, mal-function or even damage to the AC drive.

• Do not connect the earthing terminal to the neutral conductor of the power supply.

2.4.4 Control Circuit Terminals

♦ A: PV150A & PV150I(0.4~1.5kW) Control Circuit Terminals

Figure 2-28a PV150A & PV150I(0.4~1.5kW) Control Circuit Terminals

◆B: PV150I(2.2~5.5kW) Control Circuit Terminals

Figure 2-28b PV150I(2.2~5.5kW) Control Circuit Terminals

◆C: PV500 Control Circuit Terminals

Terminal	Symbol	Terminal Name	Description				
Power S							
+10V-GN		+10V Power Supply	Output +10V Power Supply, Maximum Output Current: 10mA. Generally use for power supply of external potentiometer, resistance range of potentiometer: $1{\sim}5k\Omega$				
+24V-GN	ND (A)	24V Power Supply	Output +24V power supply, generally use for power supply of digital input/output terminal and				
+24V-CC	DM (B/C)		external sensor, maximum output current: 200mA.				
PLC		External Power Input Terminal	Factory default in connection with +24V, when using an external signal to drive DI1~DI7, PLC need to be connected to external power, and disconnected with +24V power terminal.				
Analog I	Input	•	•				
AI1-GND)	Analog Input Terminal 1	Input Range: DC $0\sim 10V/0\sim 20$ mA, selected by Al1、Al2 toggle switches on control board. Input				
AI2-GND		Analog Input Terminal 2	Output +24V power supply, generally use for power supply of digital input/output terminal and external sensor, maximum output current: 200m/ Factory default in connection with +24V, when using an external signal to drive DI1~DI7, PLC need to be connected to external power, and disconnected with +24V power terminal. Input Range: DC 0~10V/0~20mA, selected by Al1、 Al2 toggle switches on control board. Input Impedance: 250kΩ for voltage input, 250Ω for current input. Output range:DC 0~10V/0~20mA, selected by A01、 A02 toggle switches on control board. Impedance required≥10kΩ Maximum input frequency: 200Hz Input Impedance: 2.4kΩ Voltage Range of level-input:9V~30V Besides the features of DI1~DI6, DI7 also can be the channel of high-speed pulse input. Maximum input frequency: 100kHz. Voltage range: 0~24V Current range: 0~24V Current range: 0~50mA				
Analog	Output	1					
AO1-GN	D	Analog Output Terminal 1	Output range: DC $0 \sim 10 V/0 \sim 20 mA$, selected by				
AO2-GN		Analog Output Terminal 2					
Digital I	ntput	D: 2 U					
DI1		Digital Input Terminal 1					
DI2	Common	Digital Input Terminal 2					
DI3	terminal :	Digital Input Terminal 3	· · ·				
DI4	COM (B/C)	Digital Input Terminal 4					
DI7/HI	GND (A)	Digital Input Terminal 7 or high-speed pulse input	Besides the features of DI1~DI6, DI7 also can be the channel of high-speed pulse input. Maximum input frequency: 100kHz.				
Digital C	Dutput		•				
Y1	Common terminal :	Open collector output 1	0 0				
Y2/HO	COM (B/C)	Open Collector Output 2or	Apart from Y1 characteristics, Y2 also can be the channel of high-speed pulse input. Maximum				
	GND (A)	high-speed pulse output	output frequency: 100kHz.				
Relay O	utput						
R1A-R10	0	normal open terminal					
R1B-R10	C	normal close terminal	Contact driving ability: AC250V, 3A, COSØ=0.4。				
R2A-R20	0	normal open terminal	DC 30V, 1A				
R2B-R20	C	normal close terminal					

Table 2-2 Control Circuit Terminal Functions

PV500&PV150A Series Solar Pumping Inverter

RS485 Communication	n	
485+-485-	485 Communication Terminals	Speed: 4800/9600/19200/38400/57600/115200bps.
GND	485 Communication Shield Ground	RS485 toggle switch on control board, setting the terminal matching-resister
Others		
PE	Shield Grounding	It's use for grounding the shield of terminal-wire
	External Keyboard Interface	When connected to operation board, the longest communication distance is up to 50m, adopt the standard network cable (RJ45)

*Note:

A: Control circuit A (Fig2-28a)

B: Control circuit A (Fig2-28b)

C: Control circuit A (Fig2-28c)

Chapter 3 Function Parameters

3.1 The Basic Function Parameters

Table 3-1 Basic Function Parameters

Param.	Parameter Name	Setting Range	Default	Att r
Group F	00: System Parameters	•		
F00.00	Setting of User Password	0~65535	0	×
F00.01	Display of Parameters	0: Display all parameters 1: Only display F00.00, F00.01 and user-defined parameters F17.00~F17.29 2: Only display A0-00, A0-01, and the parameters different with factory default	0	×
F00.02	Parameter Protection	0: All parameter programmable 1: Only F00.02 and this parameter programmable	0	×
F00.03	G/P type display	0: G type (constant torque load) 1: P type (variable torque load e.g. fan and pump)	0	×
F00.04	Parameter Initialization	0: No operation 1: Restore all parameters to factory default (excluding motor parameters) 2: Clear fault record 3: Back up current user parameters 4: Restore user backup parameters 5: Restore factory default(include motor parameter) 6: Power consumption zero clearing(U00.35)	0	×
F00.05	Copy of Parameters(Need an uploading and downloading module)	0: No operation 1: Upload parameter 2: Download parameter (excluding motor parameters) 3: Download parameter (including motor parameters)	0	×
F00.06	Parameter editing mode	0:Editable via keypad and RS485 1:Editable via keypad 2:Editable via RS485	0	×
F00.08	Motor 1 control mode	0: Voltage/Frequency (V/F) control 1:Sensor-less vector control 1 2: Sensor-less vector control 2	0	×
F00.09	DI7/HI input mode	0:Digital input terminal 7 1: Pulse input	0	×
F00.10	AI1\AI2\AI3 input mode	Unit's place: Al1 0: Analog input 1: Digital input Decade: Al2 (same as Al1)	000	×

F00.11 Y2/HO input mode 0: Digital Output terminal 2 0 × 1: Pulse output 1: Pulse output 0 × 1: Random carrier 1: Random carrier 0 × 2: Derating of fixed carrier 3: Derating of random carrier 0 × 5: Derating of fixed carrier 3: Derating of random carrier 0 × F00.12 PWM optimization 1: Five-segment mode 0000 × 5: Five-segment automatic switchover Hundred place: over-modulation adjustment 0000 × F00.13 Carrier frequency 0.700~16.000kHz 8.000kH × F00.14 Upper carrier 0.700~16.000kHz 2.000kH × F00.15 Lower carrier 0.700~16.000kHz 2.000kH × F00.16 Output voltage 5.0~150.0% 100.0% × F00.16 Output voltage 5.0~150.0% 100.0% × F00.17 AVR 0: Disabled 1 × F00.18 Fan control 0: Run at poweron 1 × F00.20 Inverter rated ontage 60~66535 <		50A Series Solar Pumping Ir	Hundreds place: AI3 (same as AI1)		
F00.11 Y2/HO input mode 1: Puise output 0 × Unit place: PWM modulation mode 0: Fixed carrier 0 × F00.12 PWM optimization 0: Fixed carrier 0: Fixed carrier 0: Fixed carrier F00.12 PWM optimization 0: Even-segment mode 0: Seven-segment mode 0: Fixed carrier F00.12 PWM optimization 2: Five-segment mode 0: Seven-segment mode 0: Seven-segment mode F00.13 Carrier frequency 0.700~16.000kHz Model 0 F00.14 Upper carrier 0.700~16.000kHz 8.000kH × F00.15 Lower carrier 0.700~16.000kHz 2.000kH × F00.16 Output voltage 5.0~150.0% 100.0% × F00.16 Output voltage 0: Disabled 1 × F00.17 AVR 2: AVR is disabled if the DC 1 × F00.18 Fan control 0: Run at power-on 1 × F00.19 Factory password 0.2~710.0kW Model 0 × F00.19 Factory password 0.2~710.0kW Model					
F00.12 PWM optimization Unit place: PWM modulation mode 0: Fixed carrier 1: Random carrier 2: Derating of fixed carrier 3: Berating of random carrier 000 × F00.12 PWM optimization Seven-segment mode 1: Five-segment mode 2: Five-segment automatic switchover Hundred' place: over-modulation adjustment 0: Invaild 1-9: 1.01-1.09 times of over-modulation 000 × F00.13 Carrier frequency 0.700~16.000kHz Model defined △ F00.14 Upper carrier frequency 0.700~16.000kHz 8.000kH z × F00.14 Upper carrier frequency 0.700~16.000kHz 2.000kH z × F00.15 Lower carrier frequency 0.700~16.000kHz 2.000kH z × F00.16 Output voltage 5.0~150.0% 100.0% × F00.17 AVR 0: Disabled 1: Enabled 1 × F00.17 AVR 0: Run at power-on 1: Fan working during running 1 × F00.19 Factory password 0.~65535 0 × F00.20 Inverter rated voltage 60~660V Model defined ○ F00.21 Inverter rated voltage 60~660V Model defined ○ F00.22 Mod	F00.11	Y2/HO input mode	0	0	×
F00.13 Carrier frequency 0.700~16.000kHz Model defined △ F00.14 Upper carrier frequency 0.700~16.000kHz 8.000kH z z F00.15 Lower carrier frequency 0.700~16.000kHz 2.000kH z x F00.16 Output voltage 5.0~150.0% 100.0% x F00.16 Output voltage 5.0~150.0% 100.0% x F00.17 AVR 0.15 isolated 1 x F00.17 AVR 0.15 isolated 1 x F00.18 Fan control 0.1 isolateg of DC bus, and it will be enabled if the DC bus voltage of DC bus. 1 x F00.19 Factory password 0~65535 0 x F00.20 Inverter rated power 0.2~710.0kW Model defined 0 F00.21 Inverter rated voltage 60~660V Model 0 0 F00.22 Inverter rated current 0.1~1500.0A Model 0 0 0 F00.23 Software version 0.00~65535 0 x X F00.24 Dealer password 0~65535h(0: Invaild) <td>F00.12</td> <td>PWM optimization</td> <td>Unit' place: PWM modulation mode 0: Fixed carrier 1: Random carrier 2: Derating of fixed carrier 3: Derating of random carrier Ten' place: PWM modulation mode 0: Seven-segment mode 1: Five-segment mode 2: Five-segment and seven-segment automatic switchover Hundred' place: over-modulation adjustment 0: Invalid 1~9: 1.01~1.09 times of</td> <td>000</td> <td>×</td>	F00.12	PWM optimization	Unit' place: PWM modulation mode 0: Fixed carrier 1: Random carrier 2: Derating of fixed carrier 3: Derating of random carrier Ten' place: PWM modulation mode 0: Seven-segment mode 1: Five-segment mode 2: Five-segment and seven-segment automatic switchover Hundred' place: over-modulation adjustment 0: Invalid 1~9: 1.01~1.09 times of	000	×
Frequency 0.700~16.000KHz z x F00.15 Lower carrier frequency 0.700~16.000kHz 2.000KH z x F00.16 Output voltage 5.0~150.0% 100.0% x F00.16 Output voltage 5.0~150.0% 100.0% x F00.17 AVR 0: Disabled 1 x F00.17 AVR 0: Disabled 1 x F00.18 Fan control 0: Run at power-on 1 x F00.19 Factory password 0~65535 0 x F00.20 Inverter rated power 0.2~710.0kW Model defined 0 F00.21 Inverter rated voltage 60~660V Model defined 0 F00.22 Inverter rated current 0.1~1500.0A Model defined 0 F00.23 Software version 0.00~655.35 0 x F00.24 Dealer password 0~65535 0 x F00.25 Setting operation time 0~65535 0 x	F00.13	Carrier frequency	0.700~16.000kHz		Δ
Frequency 0.700~16.000kHz z x F00.16 Output voltage 5.0~150.0% 100.0% x F00.17 AVR 0: Disabled 1 1 x F00.17 AVR 0: Disabled 1 x x F00.17 AVR 0: Disabled 1 x x F00.18 Fan control 0: Run at power-on 1 x x F00.18 Fan control 0: Run at power-on 1 x x F00.20 Inverter rated power 0.2~710.0kW Model defined 0 x F00.21 Inverter rated voltage 60~660V Model defined 0 0 F00.22 Inverter rated current 0.1~1500.0A Model defined 0 0 F00.23 Software version 0.00~655.35 0 x x F00.24 Dealer password 0~65535h(0: Invaild) 0h x F01.00 Frequency source selection 1: Auxiliary frequency source 1: Auxiliary frequency source	F00.14		0.700~16.000kHz		×
F00.17 AVR 0: Disabled 1: Enabled 1: Enabled 2: AVR is disabled if the DC bus voltage > the rated voltage of DC bus, and it will be enabled if the DC bus voltage≤the rated voltage of DC bus. 1 × F00.18 Fan control 0: Run at power-on 1 × F00.19 Factory password 0~65535 0 × F00.20 Inverter rated power 0.2~710.0kW Model defined ○ F00.21 Inverter rated voltage 60~660V Model defined ○ F00.22 Inverter rated voltage 0.1~1500.0A Model defined ○ F00.23 Software version 0.00~655.35 0 × F00.24 Dealer password 0~65535h(0: Invaild) 0h × Group F01: Frequency Source selection 0: Master frequency source 1: Auxiliary frequency source 1: Auxiliary frequency source 2: Master + Auxiliary 0 × F01.00 Frequency source selection 0: Master frequency source 0: Alt (Master + Auxiliary) 0 ×	F00.15	Lower carrier	0.700~16.000kHz		×
F00.17 AVR 1: Enabled 2: AVR is disabled if the DC bus voltage > the rated voltage of DC bus, and it will be enabled if the DC bus voltage≤the rated voltage of DC bus. 1 × F00.18 Fan control 0: Run at power-on 1: Fan working during running 1 × F00.19 Factory password 0~65535 0 × F00.20 Inverter rated power 0.2~710.0kW Model defined ⊙ F00.21 Inverter rated voltage 60~660V Model defined ⊙ F00.22 Inverter rated current 0.1~1500.0A Model defined ⊙ F00.23 Software version 0.00~655.35 0 × F00.24 Dealer password 0~65535h(0: Invaild) 0h × F00.25 Setting operation time 0~65535h(0: Invaild) 0h × F01.00 Frequency source selection 0: Master frequency source 1: Auxiliary frequency source 2: Master + Auxiliary 3: Master - Auxiliary 5: MIN (Master, Auxiliary) 0 × 60.7 Aixter + Auxiliary 7: Al2(Master + Auxiliary) 0 ×	F00.16	Output voltage	5.0~150.0%	100.0%	×
F00.18 Fan control 0: Run at power-on 1: Fan working during running 1 × F00.19 Factory password 0~65535 0 × F00.20 Inverter rated power 0.2~710.0kW Model defined · F00.21 Inverter rated voltage 60~660V Model defined · F00.22 Inverter rated current 0.1~1500.0A Model defined · F00.23 Software version 0.00~655.35 Model defined · F00.24 Dealer password 0~65535 0 × F00.25 Setting operation time 0~65535h(0: Invaild) 0h × Group F01: Frequency Command 0: Master frequency source 2: Master + Auxiliary 3: Master - Auxiliary 3: Master - Auxiliary 5: MIN (Master, Auxiliary } 5: MIN (Master, Auxiliary } 5: MIN (Master, Auxiliary) 7: Al2(Master + Auxiliary) 0 ×	F00.17	AVR	1: Enabled 2: AVR is disabled if the DC bus voltage > the rated voltage of DC bus, and it will be enabled if the DC bus voltage≤the	1	×
F00.19 Factory password 0~65535 0 x F00.20 Inverter rated power 0.2~710.0kW Model defined ··· F00.21 Inverter rated voltage 60~660V Model defined ··· F00.22 Inverter rated current 0.1~1500.0A Model defined ··· F00.23 Software version 0.00~655.35 Model defined ··· F00.24 Dealer password 0~65535 0 × F00.25 Setting operation time 0~65535h(0: Invaild) 0h × Group F01: Frequency Command 0: Master frequency source 2: Master - Auxiliary 0 × F01.00 Frequency source selection 5: MIN (Master, Auxiliary [] 0 × F11.00 Frequency source selection 6: Al1(Master + Auxiliary) 0 ×	F00.18	Fan control	0: Run at power-on	1	×
F00.20 Inverter rated power 0.2~710.0kW Model defined F00.21 Inverter rated voltage 60~660V Model defined F00.22 Inverter rated current 0.1~1500.0A Model defined F00.23 Software version 0.00~655.35 Model defined F00.24 Dealer password 0~65535 0 × F00.25 Setting operation time 0~65535h(0: Invaild) 0h × Group F01: Frequency Command 0: Master frequency source 2: Master - Auxiliary 0 × F01.00 Frequency source selection 0: Master frequency source 0 × F01.00 Frequency source selection 0: Master requency source 0 ×	F00.19	Factory password	° °	0	×
F00.21 Inverter rated voltage 60~660V Model defined F00.22 Inverter rated current 0.1~1500.0A Model defined F00.23 Software version 0.00~655.35 Model defined F00.24 Dealer password 0~65535 0 × F00.25 Setting operation time 0~65535h(0: Invaild) 0h × F01.00 Frequency Source selection 0: Master frequency source 0 × F01.00 Frequency source selection 0: Master frequency source 0 × F01.00 Frequency source selection 0: Master frequency source 0 × F01.00 Frequency source selection 0: Master + Auxiliary 0 ×	F00.20		0.2~710.0kW		\odot
F00.22 Inverter rated current 0.1~1500.0A defined F00.23 Software version 0.00~655.35 Model defined F00.24 Dealer password 0~65535 0 F00.25 Setting operation time 0~65535h(0: Invaild) 0h Group F01: Frequency Command 0: Master frequency source 1: Auxiliary frequency source 2: Master + Auxiliary 3: Master - Auxiliary 0 5: MIN (Master, Auxiliary } 5: MIN (Master, Auxiliary } 0 6: Al1(Master + Auxiliary) 7: Al2(Master + Auxiliary) 1: Auxiliary	F00.21	Inverter rated voltage	60~660V	Model	\odot
F00.23 Software version 0.00~655.35 defined 0 F00.24 Dealer password 0~65535 0 × F00.25 Setting operation time 0~65535h(0: Invaild) 0h × Group F01: Frequency Command 0° 8 0° 8 F01.00 Frequency source selection 0: Master frequency source 0 × 5: MIN (Master, Auxiliary 3: Master - Auxiliary 0 × 5: MIN (Master, Auxiliary) 5: MIN (Master, Auxiliary) 0 ×	F00.22	Inverter rated current	0.1~1500.0A		\odot
F00.25 Setting operation time 0~65535h(0: Invaild) 0h × Group F01: Frequency Command 0. Master frequency source 1. Auxiliary frequency source 1. Auxiliary frequency source 1. Auxiliary 0. Master + Auxiliary 0. Master + Auxiliary 1. Auxiliary frequency source 1. Auxiliary 1.	F00.23	Software version	0.00~655.35		\odot
Group F01: Frequency Command 0: Master frequency source F01.00 Frequency source selection 0: Master frequency source 5: MIN {Master, Auxiliary } 0 x 6: Al1(Master + Auxiliary) 7: Al2(Master + Auxiliary)				-	×
F01.00 Frequency source Fequency source 1: Auxiliary frequency source 2: Master + Auxiliary 3: Master - Auxiliary 3: Master - Auxiliary 3: Master, Auxiliary 5: MIN {Master, Auxiliary } 5: MIN {Master, Auxiliary } 6: Al1(Master + Auxiliary) 7: Al2(Master + Auxiliary)			$0{\sim}65535h(0: Invaild)$	0h	×
F01.00 Frequency source 2: Master + Auxiliary 0 × Selection 4: MAX{Master, Auxiliary } 0 × 5: MIN {Master, Auxiliary } 6: Al1(Master + Auxiliary) 7: Al2(Master + Auxiliary)	Group F	01: Frequency Command			_
	F01.00		1: Auxiliary frequency source 2: Master + Auxiliary 3: Master - Auxiliary 4: MAX{Master, Auxiliary } 5: MIN {Master, Auxiliary } 6: Al1(Master + Auxiliary)	0	×
	F01.01	Master Frequency	0:Master digital setting (F01.02)	1	×

		PV500&PV150A Series Sc	olar Pumping	Inve
	Command Source	1: keypad potentiometer		
		2: Analog input AI1		
		3: Communication		
		4: Multi-reference		
		5: PLC		
		6: Process PID output		
		7: X7/HI pulse input		
		8: AI2		
		9: AI3		
F01.02	Digital Setting of Master Frequency	0.00~Fmax	50.00Hz	Δ
	- 1	0: Auxiliary digital setting (F01.04)		
		1: keypad potentiometer		
		2: Analog input AI1		
		3: Communication		
	Auxiliary Frequency	4: Multi-reference		
F01.03	Command Source	5: PLC	0	×
		6: Process PID output		
		7: X7/HI pulse input	_	
		8: Analog input Al2	-	
			-	
	Disital actting of	9: Analog input Al3		
F01.04	Digital setting of auxiliary frequency	0.00~Fmax	50.00Hz	\triangle
F01.05	Range of auxiliary	0: Relative to maximum frequency	0	×
1 01.00	frequency	1: Relative to master frequency	Ű	^
F01.06	Coeff of auxiliary frequency	0.0~150.0%	100.0%	\triangle
F01.07	Jog frequency	0.00~Fmax	5.00Hz	\triangle
F01.08	Maximum frequency	20.00~600.00Hz	50.00Hz	×
		Fdown~Fmax		
F01.09	Upper limit frequency	Lower limit frequency~maximum	50.00Hz	×
	oppor mineroquorio)	frequency		
F01.10	Lower limit frequency	0.00~Fup	0.00Hz	×
101.10	Operation when	0: Run at lower limit frequency	0.00112	Ê
	command frequency		-	
F01.11	lower than lower limit	1: Run at 0 Hz would be activated	0	×
	frequency	after the time delay set by F01.12		
	Lower limit frequency		50.00Hz 50.00Hz 0 50.00Hz 0 100.0% 5.00Hz 50.00Hz 50.00Hz 0.00Hz 0.00Hz 0.00Hz 0.00Hz 0.00Hz 0.00Hz 0.00Hz	
F01.12	running time	0.0~6000.0s	60.0s	×
	Up to this frequency, start		ł	
F01.13		0.00~600.00Hz	50.00Hz	\triangle
_	frequency compensation			
F01.14	Frequency compensation per 50Hz	0.00~50.00Hz	0.00Hz	\triangle
Group E	02: Start/Stop Control		I	L
Stoup F		0: Keypad control (LED off)	1	1
		1: Terminal control (LED on)	1	
F02.00	Run command	2: Communication control (LED on)	0	×
		blinking)	ł	<u> </u>
			1 .	Δ
F02.01	Running direction	0: Forward	0	
F02.01	Running direction	1: Reverse	0	
	<u> </u>	1: Reverse 0: Reverse enabled		
F02.01 F02.02	Running direction Reverse-proof action	1: Reverse		×
F02.02	<u> </u>	1: Reverse 0: Reverse enabled 1: Reverse disabled	0	×
	Reverse-proof action	1: Reverse 0: Reverse enabled	0	
F02.02	Reverse-proof action Dead time between	1: Reverse 0: Reverse enabled 1: Reverse disabled	0	×

PV500&PV1	50A Series Solar Pumping Inv	verter		
		1:Rotational speed track and restart		
		Ten's digit:		
		0:Ungrounded short-circuit		
		detection		
		1:Grounding short-circuit detection		
		before the first starts		
		2:Grounding short-circuit detection		
		before each starts		
		Hundred's digit		
		0:Track from zero speed		
		1:Track from max frequency		
		Thousand's:Select if Jog function		
		takes the priority		
		0:Disable 1:Enable		
		Ten thousand's place: speed tracking direction		
		0: last parking direction		
		1: forward		
		2: reverse		
		3: Starting direction		
F02.05	Start frequency	0.00~10.00Hz	0.00Hz	×
	Startup frequency holding			
F02.06	time	0.0~100.0s	0.0s	×
F02.07	Startup DC brakin current	0.0~150.0%	0.0%	×
F02.08	DC braking time at start	0.0~100.0s	0.0s	×
F02.09	Speed search current	0.0~180.0%	130.0%	\bigtriangleup
F02.10	Sped search decel time	0.0~10.0s	1.0s	×
F02.11	Sped search coefficient	0.01~5.00	0.30	\triangle
F02.12	Stop mode	0: Ramp to stop	0	×
		1: Coast to stop		
F02.13	Initial frequency of stop DC braking	0.01~50.00Hz	2.00Hz	×
F02.14	Stop DC braking current	0.0~150.0%	0.0%	×
F02.15	Waiting time of stop DC	0.0∼30.0s	0.0s	×
	braking			
F02.16	Stop DC braking time	0.0~30.0s	0.0s	×
		0: Disabled		
F02.17	Dynamic brake	1: Enabled	0	×
		2: Enabled at running		
-		3: Enabled at deceleration		\vdash
F02.18	Voltage of dynamic braking	480~800V	700V	\times
F02.19	Brake use ratio	5.0~100.0%	100.0%	×
F02.20	0Hz output selection	0: No voltage output	0	×
102.20		1: Voltage output	Ŭ	^
F02.21	Auto-start of power-on	0: Invalid	0	\triangle
102.21	again	1: Valid	Ŭ	<u> </u>
	Waiting time between			
F02.22	auto-start and power-on	0.0~10.0s	0.5s	\bigtriangleup
Crown Ed	again		l	
F03.00	03: Accel/Decel Parameters Accel time 1	0.06000.0-	15.00	
F03.00	Decel time 1	0.0~6000.0s 0.0~6000.0s	15.0s 1.0s	\triangle
F03.01	I Deceltime t	UUU~00000S	1.05	Δ
F03.02	Accel time 2	0.0~6000.0s	15.0s	\triangle
PV500&PV150A Series Solar Pumping Inverter

		PV500&PV150A Series Sc	lar Pumping	Invert
F03.03	Decel time 2	0.0~6000.0s	15.0s	\triangle
F03.04	Accel time 3	0.0~6000.0s	15.0s	Δ
F03.05	Decel time 3	0.0~6000.0s	15.0s	Δ
F03.06	Accel time 4	0.0~6000.0s	15.0s	Δ
F03.07	Decel time 4	0.0~6000.0s	15.0s	Δ
F03.08	Jog accel time	0.0~6000.0s	15.0s	\triangle
F03.09	Jog decel time	0.0~6000.0s	15.0s	
F03.09	Jog decer line	0: Linear Accel/Decel	15.05	
F03.10	Accel/Decele curve	1: S-curve Accel/Decel	0	×
F03.11	Initial segment time of acceleration of S curve	0.0~6000.0s	0.0s	×
F00.40	Time unit of acceleration	0: 0.1s		
F03.12	and deceleration	1: 0.01s	0	×
F03.13	Frequency switchover point between acceleration time 1 and acceleration time 2	0.00~Fmax	0.00Hz	×
F03.14	Frequency switchover point between deceleration time 1 and deceleration time 2	0.00∼Fmax	0.00Hz	×
F03.15	End segment time of acceleration of S curve	0.0~6000.0s	0.0s	×
F03.16	Initial segment time of deceleration of S curve	0.0~6000.0s	0.0s	×
F03.17	End segment time of	0.0∼6000.0s	0.0s	×
	deceleration of S curve			
	04 Digital Input	00. No fire attain		1
F04.00	Function of terminal DI1	00: No function	1	×
F04.01	Function of terminal DI2	01: Running forward (FWD) 02: Running reverse (REV)	51	×
F04.02	Function of terminal DI3	03: Three-wire control	52	×
F04.03	Function of terminal DI4	04: JOG forward	13	×
F04.04	Function of terminal DI5	05: JOG reverse	0	×
F04.05	Function of terminal DI6	06: Coast to stop	0	×
F04.06	Function of terminal DI7	07: Fault reset (RESET)	0	×
F04.07	Function of terminal AI1	08: Running suspended	0	×
F04.08	Function of terminal AI2	09: External fault input	0	×
F04.09	Function of terminal AI3	 10: Terminal UP 11: Terminal DOWN 12: UP/DOWN (including ////key) adjustment clear 13: Multi-step frequency terminal 1 14: Multi-step frequency terminal 2 15: Multi-step frequency terminal 3 16: Multi-step frequency terminal 4 17: Accel/Decel time determinant 1 18: Accel/Decel disabled(ramp stop not inclusive) 20: Switch to auxiliary speed setting 21: PLC status reset 22: Simple PLC paused 23: Simple PLC paused 	0	×

2V500&PV1	50A Series Solar Pumping Inv	verter		
		 24: PID adjustment direction 25: PID integration paused 26: PID parameter switch 27: Swing frequency pause(output the currentfrequency) 28: Swing frequency reset(output the central frequency) 29: Run command switched to terminal control 30: Run command switched to terminal control 31: Run command switched to communication control 32: Count input 33: Count clear 34: Length count 35: Length clear 36: DC brake input command at Stop 37: Speed/torque control switch 38:No reverse 39:No forward 50: Special machine enable 51: Solar panel power supply enable 52: Enter into dormancy 		
F04.10	Filtering time of digital input terminal	0.000~1.000s	0.010s	Δ
F04.11	Delay time before terminal DI1 is valid	0.0~300.0s	0.0s	Δ
F04.12	Delay time before terminal DI2 is valid	0.0~300.0s	0.0s	\triangle
F04.13	Terminal DI1~DI5 positive/negative logic	DI5, DI4, DI3, DI2, DI1 0: Positive logic(Terminals are on at 0V/off at 24V) 1: Negative Logic (Terminals are off at 0V/on at 24V)	00000	×
F04.14	Terminal DI6~AI3 positive/negative logic	Al3, Al2, Al1, Dl7, Dl6 0: Positive logic 1: Negative Logic	00000	×
F04.15	FWD/REV terminal control mode	0: Two-wire mode 1 1: Two-wire mode 2 2: Three-wire mode 1 3: Three-wire mode 2	0	×
F04.16	Terminal UP/DOWN frequency adjustment control	Unit's place: action when stop 0: Clear 1: Holding Decade: action on power loss 0: Clear 1: Holding Hundreds place: integral function 0: No integral function 1: Integral function enabled Thousand's place: Select if it can be reduced to negative frequency 0: Disable 1: Enable Ten thousand's place: Select if Jog	00001	×

PV500&PV150A Series Solar Pumping Inverter

		PV500&PV150A Series Sc	lar Pumping	inve
		action can clear UP/DOWN or not		
		0: Not zero-clearing		
		1: Zero-clearing		
	Terminal UP/DOWN	5		
F04.17	frequency change step	0.00~50.00Hz 0.00:Disabled	1.00Hz/ 200ms	\triangle
	size		200015	
		0: Level effective		
	Terminal action colection	1: Edge trigger +Level		
F04.18	Terminal action selection	effective(When power on)	0	×
	when power on	2: Edge trigger +Level		
		effective(Every start)		
F04.19	Delay time before terminal		0.0s	
F04.19	DI1 is invalid	0.0~300.0s	0.05	\bigtriangleup
F04.00	Delay time before terminal	0.0.000.0-	0.0-	
F04.20	DI2 is invalid	0.0~300.0s	0.0s	Δ
Group FO	05 Digital Output			
F05.00	Y1 output function	0: No output	1	×
F05.01	Y2 output function	1: Drive is running	3	×
F05.02	Relay 1 output function	2: Fault output	30	×
		3: Frequency-level detection FDT1		
F05.03	Relay 2 output function	 4: Frequency-level detection FDT2 output 5: Drive in 0Hz running 1(no output at stop) 6: Drive in 0Hz running 2(output at stop) 7: Upper limit frequency attained 8: Lower limit frequency attained 9: Frequency attained 10: Inverter is ready to work 11: Drive (motor) overloaded alarm 12: Inverter overheat warning 13: Current running time attained 14: Accumulative power-on time attained 15: Consecutive running time attained 16: PLC cycle completed 17: Set count value attained 18: Designated count value attained 19: Length attained 20: Under load alarm 21:Brake output 22: DI1 23: DI2 24:When reach the range of set frequency(FDT1) 	11	×
		25:Reserved 26: PID feedback lost 27: operation status (inching without output) 28: communication setting (address 2007h) 30:Grid and solar power autoewitch		
F05.04	Y1 output delay time	26: PID feedback lost 27: operation status (inching without output) 28: communication setting (address	0.0s	

	150A Series Solar Pumping Inv		0.0-	
F05.06	R1 output delay time	0.0~6000.0s	0.0s	Δ
F05.07	R2 output delay time	0.0~6000.0s	0.0s	\triangle
		Unit's place: Y1	_	
		0: Positive logic		
		1: Negative logic		
F05.08	Enabled state of digital	Decade: Y2 (same as unit's place)	0000	×
1 00.00	output	Hundreds place: Relay 1 output	0000	~
		(same as unit's place)		
		Thousands place: Relay 2 output		
		(same as unit's place)		
F05.09	Detection width of	0.00~20.00Hz	5.00Hz	×
	frequency attained			
F05.10	FDT1 upper bound	0.00∼Fmax	30.00Hz	×
F05.11	FDT1 lower bound	0.00 \sim Fmax	30.00Hz	×
F05.12	FDT2 upper bound	0.00∼Fmax	30.00Hz	×
F05.13	FDT2 lower bound	0.00~Fmax	30.00Hz	×
	Consecutive running			1
F05.14	time	0.0~6000.0Min 0.0:Disabled	0.0Min	×
	Accumulative power-on		Oh	1
F05.15	time setting	$0\sim$ 65535h 0:Disabled	0h	×
F05.16	Accumulative running	$0\sim$ 65535h 0:Disabled	0h	
FU5.16	time setting		Un	×
F05.17	Brake control selection	0: Disabled	0	
		1: Enabled	-	×
F05.18	Brake opened frequency	Closed frequency ~30.00Hz	2.50Hz	×
F05.19	Brake opened current	0.0~200.0%	0.0%	\triangle
F05.20	Brake open waiting time	0.00~10.00s	0.00s	×
F05.21	Brake open operating time	0.00~10.00s	0.50s	×
F05.22	Brake closed frequency	0.00Hz~opened frequency	2.00Hz	×
F05.23	Brake close waiting time	0.00~10.00s	0.00s	×
F05.24	Brake close operating	0.00~10.00s	0.50s	×
	time		0.005	^
Group F			T	
F06.00	Minimum input of curve	0.0% \sim input of inflection point1	1.0%	\triangle
. 00.00	Al1	of curve AI1	1.070	
	Set value corresponding			1
F06.01	to minimum input of	-100.0~100.0%	0.0%	\triangle
	curve Al1		ļ	
F06.02	Input of inflection point	Minimum input of curve AI1~Input	100.0%	\triangle
1 00.02	1 of curve Al1	of inflection point 2 of curve Al1	100.075	
	Set value corresponding			
F06.03	to input of inflection	-100.0~100.0%	100.0%	\triangle
	point 1 of curve Al1		ļ	<u> </u>
F06.04	Input of inflection point	Input of inflection point 1 of curve	100.0%	
	2 of curve Al1	AI1~Maximum input of curve AI1		
	Set value corresponding		100.000	l .
F06.05	to input of inflection	-100.0~100.0%	100.0%	\triangle
	point 2 of curve Al1			<u> </u>
F06.06	Maximum input of curve	Input of inflection point 2 of curve	100.0%	
	Al1	Al1~100.0%		
	Set value corresponding			
F06.07	to maximum input of	-100.0~100.0%	100.0%	\triangle
	curve Al1			<u> </u>
F06.08	Minimum input of curve	0.0% \sim input of inflection point1 of curve Al2	1.0%	\triangle

		T VOUGE VIOUR DEHES DE	1 3	
F06.09	Set value corresponding to minimum input of curve AI2	-100.0~100.0%	0.0%	Δ
F06.10	Input of inflection point 1 of curve AI2	Minimum input of curve AI1~Input of inflection point 2 of curve AI2	100.0%	Δ
F06.11	Set value corresponding to input of inflection point 1 of curve Al2	-100.0~100.0%	100.0%	Δ
F06.12	Input of inflection point 2 of curve AI2	Input of inflection point 1 of curve Al2~Maximum input of curve Al2	100.0%	Δ
F06.13	Set value corresponding to input of inflection point 2 of curve Al2	-100.0~100.0%	100.0%	Δ
F06.14	Maximum input of curve AI2	Input of inflection point A of curve AI2~100.0%	100.0%	\bigtriangleup
F06.15	Set value corresponding to maximum input of curve Al2	-100.0~100.0%	100.0%	Δ
F06.16	Minimum input of curve AI3	0.0% \sim input of inflection point1 of curve Al3	0.0%	Δ
F06.17	Set value corresponding to minimum input of curve AI3	-100.0~100.0%	-100.0%	Δ
F06.18	Input of inflection point 1 of curve AI3	Minimum input of curve AI1~Input of inflection point 2 of curve AI3	25.0%	\bigtriangleup
F06.19	Set value corresponding to input of inflection point 1 of curve Al3	-100.0~100.0%	-50.0%	Δ
F06.20	Input of inflection point 2 of curve AI3	Input of inflection point 1 of curve AI3~Maximum input of curve AI3	75.0%	Δ
F06.21	Set value corresponding to input of inflection point 2 of curve Al3	-100.0~100.0%	25.0%	Δ
F06.22	Maximum input of curve AI3	Input of inflection point A of curve Al3~100.0%	100.0%	Δ
F06.23	Set value corresponding to maximum input of curve Al3	-100.0~100.0%	100.0%	Δ
F06.24	Minimum input of curve keypad potentiometer	0.0~Maximum input of curve keypad potentiometer	0.5%	\bigtriangleup
F06.25	Set value corresponding to minimum input of curve keypad potentiometer	-100.0~100.0%	0.0%	Δ
F06.26	Maximum input of curve keypad potentiometer	Minimum input of curve keypad potentiometer~100.0	99.9%	Δ
F06.27	Set value corresponding to maximum input of curve keypad potentiometer	-100.0~100.0%	100.0%	Δ
F06.28	Al1 terminal filtering time	0.000~10.000s	0.100s	\bigtriangleup
F06.29	Al2 terminal filtering time	0.000~10.000s	0.100s	\triangle
F06.30	AI3 terminal filtering time	0.000~10.000s	0.100s	\triangle
F06.31	Keypad potentiometer filtering time	0.000~10.000s	0.100s	Δ
F06.32	Minimum input of curve HI	0.00 kHz~Maximum input of curve	0.00kHz	\triangle

V500&PV1	50A Series Solar Pumping In			
		HI		
F06.33	Set value corresponding to minimum input of curve HI	-100.0~100.0%	0.0%	Δ
F06.34	Maximum input of curve HI	Minimum input of curve HI \sim 100.00kHz	50.00kH z	Δ
F06.35	Set value corresponding to maximum input of curve HI	-100.0~100.0%	100.0%	Δ
F06.36	HI terminal filtering time	0.000~10.000s	0.100s	\triangle
Group F		ut		
F07.00	AO1 output function	00: No output	1	×
F07.01	AO2 output function	01: Output frequency	2	×
F07.02	Y2/HO output function (when used as HO)	02: Command frequency 03: Output current 04: Output voltage 05: Output power 06: Bus voltage 07: +10V 08: keypad potentiometer 09: Al1 10: Al2 11: Al3 12: HI 13: Output torque 14: Ao communication given 1 15: Ao communication given 2	3	×
F07.03	AO1 offset	-100.0~100.0%	0.0%	\triangle
F07.04	AO1 gain	-2.000~2.000	1.000	\triangle
F07.05	AO1 filtering time	0.000~10.000s	0.000s	\triangle
F07.06	AO2 offset	-100.0~100.0%	0.00%	\triangle
F07.07	AO2 gain	-2.000~2.000	1.000	\triangle
F07.08	AO2 filtering time	0.000~10.000s	0.000s	\triangle
F07.09	HO maximum output pulse frequency	0.01~100.00kHz	50.00kH z	
F07.10	HO output filtering time	0.000~10.000s	0.010s	\triangle
Group F	08 Parameters of Motor 1			1
F08.00	Motor 1 type selection	0: Three phase asynchronous motors 1: Synchronous motors 2: Single phase asynchronous motors (Remove capacity) 3: Single phase asynchronous motors (No need to remove capacity)	0	×
F08.01	Power rating of motor 1	0.1~1000.0kW	Model defined	×
F08.02	Rated voltage of motor 1	60~660V	Model defined	×
F08.03	Rated current of motor 1	0.1~1500.0A	Model defined	×
F08.04	Rated frequency of motor 1	20.00~Fmax	Model defined	×
F08.05	Rated speed of motor 1	1~30000	Model defined	×
F08.08	Stator resistance R1 of	0.001~65.535Ω	Model	×

PV500&PV150A Series Solar Pumping Inverter

		PV500&PV150A Series S	1 0	Inve
	async motor 1		defined	
F08.09	Rotor resistance R2 of async motor 1	0.001~65.535Ω	Model defined	×
			Model	
F08.10	Leakage inductance L1 of async motor 1	0.01~655.35mH	defined	×
	Mutual inductance L2 of		Model	
F08.11	asynchronous motor 1	0.1~6553.5mH	defined	×
	No-load current of		Model	
F08.12	async motor 1	0.1~1500.0A	defined	×
	Field weakening coeff 1			
F08.13	of async motor 1	0.0~100.0	87%	×
	Field weakening coeff 2			
F08.14	of async motor 1	0.0~100.0	75%	×
500.45	Field weakening coeff 3		700/	
F08.15	of async motor 1	0.0~100.0	70%	×
F00.40	Stator resistance of sync	0.004 05 5050	Model	
F08.16	motor	0.001~65.535Ω	defined	\times
F00 47	Direct axis inductance of		Model	
F08.17	sync motor	0.01~655.35mH	defined	\times
E00.40	Quadrature axis		Model	
F08.18	inductance of sync motor	0.01~655.35mH	defined	\times
F00.40		0. 055251/	Model	
F08.19	Back EMF of sync motor	0∼65535V	defined	\times
F08.20	Installation angle of	0.0~359.9°	0.0°	×
1 00.20	encoder	0.0 333.9	0.0	~
F08.21	Motor's pole number	0~1000	4	\odot
F08.22	Find encoder origin at	0: Not find	1	×
100.22	begining	1: Find	·	
	Autotuning of motor 1	0: No autotuning	0	
F08.30		1: Static autotuning of motor		×
		2: Rotary autotuning of motor		
Group F	09 V/f Control Parameters			-
		00: Linear V/f	4	
		01: Multi-stage V/f	4	
		02:1.2nd power V/F	4	1
		03:1.4th power V/F		1
		04:1.6th power V/F		1
		05:1.8th power V/F		1
F09.00	V/f curve setting	06: 2.0nd power V/F	0	×
103.00	wir ourve setting	07: V/F complete separation	Ŭ	^
		08: V/F half separation		
		09: 1.2 power inverse curve V/F		1
		10: 1.4 power inverse curve V/F		1
		11: 1.6 power inverse curve V/F		1
		12: 1.8 power inverse curve V/F		
		13: 2.0 power inverse curve V/F		1
F09.01	Torque boost	0.1%-30.0% 0.0% (fixed torque	0.0%	
F09.01	•	boost)	0.0%	\triangle
F09.02	Cut-off frequency of	0.00~Fmax	50.00Hz	~
103.02	torque boost	0.00 1-111dx	50.001 IZ	
F09.03	Multi-point V/F frequency	0.00~F09.05	0.00Hz	
103.03	1(F1)	0.00 1 03.03	0.00HZ	
F09.04	Multi-point V/F voltage 1	0.0~100.0	5.0%	
1 00.04	(V1)	0.0 100.0	0.070	
F09.05	Multi-point V/F frequency	F09.03~F09.05	5.00Hz	
	2(F2)			

PV500&PV150A Series Solar Pumping Inverter

50A Series Solar Pumping Inv	venter		
Multi-point V/F voltage 2 (V2)	0.0~100.0	14.0%	\bigtriangleup
Multi-point V/F frequency 3(F3)	F09.05~F09.09	25.00Hz	Δ
(V3)	0.0~100.0	50.0%	Δ
Multi-point V/F frequency 4(F4)	F09.07 \sim rated motor frequency	50.00Hz	\triangle
(V4)	0.0~100.0 Ue=100.0%	100.0%	Δ
gain	0.0~300.0%	80.0%	Δ
compensation gain	0.0~200.0%	100.0%	Δ
Excitation boost gain	0.0~200.0%	100.0%	\triangle
Oscillation Suppression	0.0~300.0%	100.0%	Δ
Voltage source for V/F separation	0: Digital setting (F09.16) 1: keypad potentiometer 2: Al1 3: Multi-reference 4: Pulse setting (DI7/HI) 5: PID 6: Al2 7: Al3	0	×
Voltage digital setting for V/F separation	0 V to rated motor voltage	0.0%	Δ
Voltage rise time of V/F separation	0.0~6000.0s It indicates the time for the voltage rising from 0 V to rated Motor voltage.	0.1s	Δ
IQ filtering time below VVF 0.5Hz	F09.19~3000ms	500ms	×
IQ filtering time above VVF 2Hz	1ms~F09.18	100ms	×
Forward torque correction	0.0~5.0%	0.0%	\triangle
Reverse torque correction	0.0~5.0%	1.0%	\triangle
PMSM acceleration current compensation setting	0.0~200.0%	0.0%	\bigtriangleup
decreased after acceleration	0.0~100.0s	2.0s	\bigtriangleup
will be maintained after accelerating.	0.0~200.0%	0.0%	\triangle
10 Vector Control Parameter			
Speed/torque control	0: speed control 1: torque control	0	×
ASR low-speed proportional gain Kp1	0.0~100.0	15.0	Δ
integration time Ti1	0.001~30.000s	0.050s	Δ
frequency 1	0.00~F10.06	5.00Hz	Δ
ASR high-speed proportional gain Kp2	1~100.0	10.0	\triangle
	Multi-point V/F voltage 2 (V2) Multi-point V/F frequency 3(F3) Multi-point V/F voltage 3 (V3) Multi-point V/F voltage 4 (V4) V/F slip compensation gain Stator voltagedrop compensation gain Excitation boost gain Oscillation Suppression Voltage source for V/F separation Voltage digital setting for V/F separation Voltage rise time of V/F separation Voltage rise time of V/F separation Voltage rise time of V/F separation IQ filtering time below VVF 0.5Hz IQ filtering time below VVF 2Hz Forward torque correction Reverse torque correction Reverse torque correction PMSM acceleration current compensation time decreased after acceleration PMSM ID current value will be maintained after accelerating. IO Vector Control Parameter Speed/torque control ASR low-speed proportional gain Kp1 ASR low-speed integration time Ti1 ASR switching frequency 1 ASR high-speed	Multi-point V/F voltage 2 (V2) $0.0 \sim 100.0$ Multi-point V/F frequency 3(F3) $F09.05 \sim F09.09$ Multi-point V/F voltage 3 (V3) $0.0 \sim 100.0$ Multi-point V/F requency 4(F4) $F09.07 \sim rated motor frequency$ Multi-point V/F voltage 4 (V4) $0.0 \sim 100.0$ V/F slip compensation gain $0.0 \sim 300.0\%$ Stator voltagedrop compensation gain $0.0 \sim 200.0\%$ Oscillation Suppression $0.0 \sim 200.0\%$ Oscillation Suppression $0.0 \sim 300.0\%$ Oscillation Suppression $0.0 \sim 300.0\%$ Oscillation Suppression $0.0 \sim 300.0\%$ Voltage source for V/F separation $0.0 \sim 300.0\%$ Voltage digital setting for V/F separation $0.0 \sim 6000.0s$ Voltage digital setting for V/F separation $0.0 \sim 6000.0s$ It indicates the time for the voltage rising from 0 V to rated Motor voltage.IQ filtering time below VVF 0.5Hz $0.0 \sim 5.0\%$ Reverse torque correction $0.0 \sim 5.0\%$ Reverse torque correction $0.0 \sim 200.0\%$ Reverse torque correction $0.0 \sim 200.0\%$ Reverse torque correction $0.0 \sim 200.0\%$ PMSM acceleration current compensation time decreased after acceleration $0.0 \sim 200.0\%$ PMSM ID current value will be maintaided after acceleration $0.0 \sim 100.0$ PMSM ID current value will be maintaided after acceleration $0.0 \sim 100.0$ ASR liow-speed proportional gain Kp1 $0.00 \sim 710.06$ ASR switching frequency 1 $0.00 \sim F10.06$	Multi-point V/F voltage 2 (V2) $0.0 \sim 100.0$ 14.0% Multi-point V/F frequency 3(F3) $F09.05 \sim F09.09$ 25.00Hz Multi-point V/F voltage 3 (V3) $0.0 \sim 100.0$ 50.0% Multi-point V/F voltage 4 (V4) $0.0 \sim 100.0$ 100.0% Multi-point V/F voltage 4 (V4) $0.0 \sim 100.0$ 100.0% V/F slip compensation gain $0.0 \sim 200.0\%$ 100.0% Stator voltagedrop compensation gain $0.0 \sim 200.0\%$ 100.0% Oscillation Suppression $0.0 \sim 300.0\%$ 100.0% Oscillation Suppression $0.0 \sim 300.0\%$ 100.0% Oscillation Suppression $0.0 \sim 300.0\%$ 100.0% Voltage source for V/F separation $3: Multi-reference$ $2: Al1$ Voltage rise time of V/F separation $0 \vee to rated motor voltage$ 0.0% V/F o.5Hz $0.0 \sim 6000.0s$ $0.1s$ $0.1s$ V/F separation $0 \vee to rated motor voltage$ $0.1s$ VVF 0.5Hz $F09.19 \sim 3000ms$ $500ms$ IQ filtering time below VVF 0.5Hz $0.0 \sim 5.0\%$ 0.0% Rowspeed rising from 0 V to rated Motor vo

F10.05	ASR high-speed integration time Ti2	0.001~30.000s	0.100s	
F10.06	ASR switching frequency 2	F10.03~Fmax	10.00Hz	
F10.07	ASR input filtering time	0.0~500.0ms	3.0ms	
F10.08	ASR output filtering time	0.0~500.0ms	0.0ms	
F10.09	Vector control slip gain	50~200%	100%	
F10.10	Digital setting of torque upper limit in speed control mode	80.0~200.0%	165.0%	×
F10.11	Excitation adjustment proportional gain Kp1	0.00~10.00	0.50	Δ
F10.12	Excitation adjustment integral gain Ti1	0.0~3000.0ms	10.0ms	
F10.13	Torque adjustment proportional gain Kp2	0.00~10.00	0.50	Δ
F10.14	Torque adjustment integral gain Ti2	0.0~3000.0ms	10.0ms	
F10.15	Excitation gain coefficient	50.0~200%	100%	\triangle
F10.16	Torque setting source under torque control	0: Set by F10.17 1: Keypad potentiometer 2: Al1 3: Al2 4: Al3 5: Pulse setting (DI7/HI) 6: Communication setting	0	×
F10.17	Digital setting of torque	6: Communication setting -200.0~200.0%	50.0%	Δ
F10.18	Forward speed limited value under torque control	0.00~Fmax	50.00Hz	
F10.19	Reverse speed limited value under torque contro	0.00 \sim Fmax	50.00Hz	
F10.20	Set torque accel time	0.0~6000.0s	0.0s	\triangle
F10.21	Set torque decel time	0.0~6000.0s	0.0s	\triangle
F10.22	Static friction torque compensation	0.0~100.0%	5.00%	
F10.23	Static friction frequency range	0.00~20.00Hz	1.00Hz	Δ
F10.24	Sliding friction torque compensation	0.0~100.0%	1.0%	
F10.25	SVC optimization method	0: Optimization method 1 1: Optimization method 2 2: Optimization method 3	1	×
F10.26	Max Frequency source under torque control	0: Set by F10.18 & F10.19 1: Keypad potentiometer 2: Al1 3: Al2 4: Al3 5: Pulse setting (DI7/HI)	0	×
F10.27	PMSM Start excitation current	0.0~150.0%	50%	×
F10.28	PMSM flux-weakening control	0: Invalid 1: Valid	1	×
F10.29	PMSM flux-weakening voltage	70.0~100.0%	95%	Δ

PV500&PV150A Series Solar Pumping Inverter

	50A Series Solar Pumping In			
F10.30	PMSM r flux-weakening gain Kp	0.0~500.0%	50.0%	\bigtriangleup
F10.31	PMSM flux-weakening integral Ti	0.00~60.00s	0.50s	\triangle
F10.32	PMSM flux-weakening limit	0.0~200.0%	100.0%	\bigtriangleup
F10.33	PMSM excitation current frequency high point	F10.34~600.00Hz	15.00Hz	\triangle
F10.34	PMSM excitation current frequency low point	0.0~F10.33	10.00Hz	\triangle
F10.35	PMSM excitation current conversion delay	0.0~10.0s	1.0s	\triangle
F10.36	PMSM speed estimation	0.00~10.00	2.00	\triangle
F10.37	PMSM speed estimation	0.1~1000.0ms	20.0ms	\triangle
Group F1	11 Protection Parameters			
		0: Current limit disabled		
F11.00	Current limit control	1: Current limit mode 1	2	×
		2: Current limit mode 2	1	
F11.01	Current limit	100.0~200.0%	150.0%	×
	Frequency decreasing			1
F11.02	time(limit current in constant speed operation)	0.0~6000.0s	5.0s	Δ
F11.03	Current limit mode 2 proportion gain	0.1~100.0%	3.0%	Δ
F11.04	Current limit mode 2 integral time	0.00~10.00s	10.00s	
F11.05	Overvoltage Stall Control	0: Overvoltage stall disabled 1: Overvoltage stall mode 1 2: Overvoltage stall mode 2	1	×
F11.06	Overvoltage stall voltage	600~800V	730V	×
F11.07	Overvoltage Stall Mode 2 Proportion Gain	0.0~100.0%	50.0%	Δ
F11.08	Overvoltage stall mode 2 frequency limit	0.00~50.00Hz	5.00Hz	×
		Unit's place: Bus undervoltage		
		0: Fault reported and coast to stop		1
		1: Stop according to the stop mode	1	1
		2: Fault reported but continue to run		1
		3: Fault protection disabled	1	1
		Ten's digit :Power input phase		
		Loss (Err09)(Same as unit's		
E44.40	Drataction action 1	place)	00000	
F11.10	Protection action 1	Hundred's digit :Power output	03330	×
		phase loss(Err10)(Same as unit's		1
		place)		
		Thousand's digit:Motor overload		
	1	(Err11)(Same as unit's place)		1
			1	
		Ten thousand's digit:Inverter		
		overload(Err11)(Same as unit's		
		overload(Err11)(Same as unit's place)		
		overload(Err11)(Same as unit's place) External equipment fault (Err13)		
F11 11	Protection action 2	overload(Err11)(Same as unit's place) External equipment fault (Err13) 0: Fault reported and coast to stop	00000	~
F11.11	Protection action 2	overload(Err11)(Same as unit's place) External equipment fault (Err13)	00000	×

		PV500&PV150A Series So	olar Pumping	Inverte
		Ten's digit: EEPROM read/write fault (Err15) (Same as unit's place)		
		Hundred's digit: Communication	-	
		overtime error (Err18) (Same as		
		unit's place)		
		Thousand's digit: PID feedback loss		
		(Err19) (Same as unit's place)		
		Ten thousand's digit: Continuous	1	
		running time reached (Err20)		
		(Same as unit's place)		
		Unit's place: Module temperature	1	
		detection disconnection (Err24)		
		0: Fault reported and coast to stop	-	
F11.12	Protection action 3	1: Stop according to the stop mode	00030	×
1 11.12	1 Totection action 5	2: Fault reported but continue to run	- 00030	^
			-	
		Ten's digit: Load becoming 0		
		(Err25) (Same as unit's place)		
		0: Current running frequency		
	Frequency selection for	1: Set frequency	1	
F11.14	continuing to run upon	2: Frequency upper limit	1	×
1 11.14	fault	3: Frequency lower limit	1	^
	lauit	4: Backup frequency upon	1	
		abnormality		
F 44.45	Backup frequency upon		0.0011	
F11.15	abnormality	0.00~Fmax	0.00Hz	×
F11.17	Motor overload protection	30.0~300.0s	60.0s	×
1 1 1.17	time		00.03	^
		Unit's place: detection option:		
		0: Always detect		
		1: Detect at constant speed only	-	
		Ten's digit : compared object		
		0: Rated current of motor		
		1: Rated current of drive		
		Hundred's digit: Fault reported		
		0:No fault reported		
		1:Fault reported		
		Thousand's digit: whether to	1	
F11.18	Overload alarm	decelerate or not when overload	00010	×
		alarm		
		0: No deceleration		
		1: Deceleration		
		Ten thousand's place: Set overload	1	
		level mode		
		0:F11.19 set		
		1:F11.19 * VP		
		2:F11.19 * AI1		
		3:F11.19 * AI2		
		4:F11.19 * AI3		
F11.19	Overload alarm threshold	20.0~200.0%	130.0%	×
	Overload alarm		1	1
F11.20	activated time that	0.1∼60.0s	5.0s	×
0	exceeding threshold	0.1 00.00	0.00	
	Inverter overheat warning		Model	
F11.21	threshold	50 \sim overheat Temperature	defined	×
	Detection level of load			
		5.0~100.0%	20.0%	×
F11.22 F11.23	loss Detection time of load loss			

	50A Series Solar Pumping In			-
	Action selection at	0: Disabled		
F11.24	instantaneous power	1: Deceleration	0	×
	failure	2: Bus voltage constant control		
F11.25	Decel time at instantaneous power failure	0.0~6000.0s	5.0s	Δ
F11.26	Rapid current limit	0: Disabled 1: Enabled	0	×
F11.27	Times of automatic trip(fault) reset	0~20	0	×
F11.28	Interval of automatic trip(fault) reset	0.1~100.0s	1.0s	×
F11.29	DO action during fault auto reset	0: Not act 1: Act	0	×
F11.30	Instantaneous power off bus voltage	60.0%~Recovery voltage	80.0%	Δ
F11.31	Instantaneous power off recovery voltage	Power off voltage~100.0%	85.0%	Δ
F11.32	Instantaneous power off voltage detection time	0.01~10.00s	0.10s	Δ
F11.33	Instantaneous power off Kp	0.1~100.0%	40.0%	Δ
F11.34	Instantaneous power off integration time Ti	0.00~10.00s (0.00: Integration invalid)	0.10s	Δ
F11.35	Motor temperature sensor type	0:None 1:PT100 2:PT1000 3:KTY84	0	×
F11.36	Zero drift value of motor temperature sensor	-100∼100℃	0	Δ
F11.37	Reserved			
F11.38	Motor temperature warning action threshold	0∼200℃	90 ℃	\triangle
F11.39	Motor temperature protection action threshold	0∼200°C	110℃	Δ
	12: Multi-Reference and Sim			
F12.00	Reference 0	-100.0~100.0%	0.0%	\triangle
F12.01	Reference 1	-100.0~100.0%	0.0%	\triangle
F12.02				
	Reference 2	-100.0~100.0%	0.0%	\triangle
F12.03	Reference 2 Reference 3	-100.0~100.0% -100.0~100.0%	0.0%	
F12.03	Reference 3	-100.0~100.0%	0.0%	Δ
F12.03 F12.04	Reference 3 Reference 4	-100.0~100.0% -100.0~100.0%	0.0% 0.0%	
F12.03 F12.04 F12.05	Reference 3 Reference 4 Reference 5	-100.0~100.0% -100.0~100.0% -100.0~100.0%	0.0% 0.0% 0.0%	
F12.03 F12.04 F12.05 F12.06	Reference 3 Reference 4 Reference 5 Reference 6	-100.0~100.0% -100.0~100.0% -100.0~100.0% -100.0~100.0% -100.0~100.0%	0.0% 0.0% 0.0%	
F12.03 F12.04 F12.05 F12.06 F12.07	Reference 3 Reference 4 Reference 5 Reference 6 Reference 7	-100.0~100.0% -100.0~100.0% -100.0~100.0% -100.0~100.0% -100.0~100.0% -100.0~100.0%	0.0% 0.0% 0.0% 0.0%	
F12.03 F12.04 F12.05 F12.06 F12.07 F12.08	Reference 3 Reference 4 Reference 5 Reference 6 Reference 7 Reference 8	-100.0~100.0% -100.0~100.0% -100.0~100.0% -100.0~100.0% -100.0~100.0% -100.0~100.0% -100.0~100.0%	0.0% 0.0% 0.0% 0.0% 0.0%	Δ Δ Δ Δ Δ Δ
F12.03 F12.04 F12.05 F12.06 F12.07 F12.08 F12.09 F12.10	Reference 3 Reference 4 Reference 5 Reference 6 Reference 7 Reference 8 Reference 9 Reference 10	-100.0~100.0% -100.0~100.0% -100.0~100.0% -100.0~100.0% -100.0~100.0% -100.0~100.0% -100.0~100.0% -100.0~100.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ
F12.03 F12.04 F12.05 F12.06 F12.07 F12.08 F12.09 F12.10 F12.11	Reference 3 Reference 4 Reference 5 Reference 6 Reference 7 Reference 8 Reference 9 Reference 10 Reference 11	-100.0~100.0% -100.0~100.0% -100.0~100.0% -100.0~100.0% -100.0~100.0% -100.0~100.0% -100.0~100.0% -100.0~100.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	
F12.03 F12.04 F12.05 F12.06 F12.07 F12.08 F12.09 F12.10 F12.11 F12.12	Reference 3 Reference 4 Reference 5 Reference 6 Reference 7 Reference 8 Reference 9 Reference 10 Reference 11 Reference 12	-100.0~100.0% -100.0~100.0% -100.0~100.0% -100.0~100.0% -100.0~100.0% -100.0~100.0% -100.0~100.0% -100.0~100.0% -100.0~100.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	Δ Δ
F12.03 F12.04 F12.05 F12.06 F12.07 F12.08 F12.09 F12.10 F12.10 F12.11 F12.12 F12.13	Reference 3Reference 4Reference 5Reference 6Reference 7Reference 8Reference 9Reference 10Reference 11Reference 12Reference 13	-100.0~100.0% -100.0~100.0% -100.0~100.0% -100.0~100.0% -100.0~100.0% -100.0~100.0% -100.0~100.0% -100.0~100.0% -100.0~100.0% -100.0~100.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	Δ Δ
F12.03 F12.04 F12.05 F12.06 F12.07 F12.08 F12.09 F12.10 F12.11 F12.12	Reference 3Reference 4Reference 5Reference 6Reference 7Reference 8Reference 9Reference 10Reference 11Reference 12	-100.0~100.0% -100.0~100.0% -100.0~100.0% -100.0~100.0% -100.0~100.0% -100.0~100.0% -100.0~100.0% -100.0~100.0% -100.0~100.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	Δ Δ

	PV500&PV150A Series Sc	olar Pumping	Inve
	1: keypad potentiometer		
	2: Al1		
	5: AI2		
	6: AI3		
		-	
		-	
		-	
		-	
Durania a secola of size als	frequency U	-	
		0000	×
PLC		-	
	Hundreds place:power loss		
		1	
		1	
Running time of step 0	0.0~6000.0s(h)	0.0s(h)	Δ
Running time of step 1	0.0~6000.0s(h)	0.0s(h)	\triangle
Running time of step 2	0.0~6000.0s(h)	0.0s(h)	\triangle
Running time of step 3	0.0~6000.0s(h)	0.0s(h)	\triangle
	0.0~6000.0s(h)	0.0s(h)	\triangle
÷ .		. ,	Δ
		()	\triangle
		()	
÷ .		. ,	
•		()	Δ
•		()	Δ
÷ .		. ,	Δ
			\triangle
Running time of step 13	0.0~6000.0s(h)	0.0s(h)	Δ
Running time of step 14	0.0~6000.0s(h)	0.0s(h)	\triangle
Running time of step 15	0.0~6000.0s(h)	0.0s(h)	Δ
Acceleration/deceleration		1	
time of simple PLC	0~3	0	\triangle
reference 0			
Acceleration/deceleration			
time of simple PLC	0~3	0	\triangle
			1
reference 1			
Acceleration/deceleration			
	0~3	0	Δ
	Running time of step 1 Running time of step 2 Running time of step 3 Running time of step 3 Running time of step 4 Running time of step 5 Running time of step 7 Running time of step 7 Running time of step 9 Running time of step 10 Running time of step 11 Running time of step 12 Running time of step 13 Running time of step 14 Running time of step 15 Acceleration/deceleration time of simple PLC reference 0	1: keypad potentiometer 2: Al1 3: Process PID output 4: X7/HI pulse input 5: Al2 6: Al3 Unit's place: PLC running mode 0: Stop after a single cycle 1: Continue to run with the last frequency after a single cycle 2: Repeat cycles Decade: started mode 0: Continue to run from the step of stop (or fault) 1: Run from the first step "multi-step frequency 0" 2: Run from the fifteenth step "multi-step frequency 0" 3: Run from the fifteenth step "multi-step frequency 15" Hundreds place: unit of simple PLC "Multi-step frequency 15" Hundreds place: unit of simple PLC running time 0: Second (s) 1: Memory disabled on power loss Thousands place: unit of simple PLC running time 0: Second (s) 1: Minute (min) Running time of step 1 0.0~6000.0s(h) Running time of step 3 0.0~6000.0s(h) Running time of step 4 0.0~6000.0s(h) Running time of step 5 0.0~6000.0s(h) Running time of step 7 0.0~6000.0s(h) Running time of step 7 0.0~6000.0s(h) Running t	$2: Al1$ $3: Process PID output$ $4: X7/H1 pulse input$ $5: Al2$ $6: Al3$ Unit's place: PLC running mode $0: Stop after a single cycle$ $1: Continue to run with the lastfrequency after a single cycle2: Repeat cyclesDecade: started mode0: Continue to run from the step ofstop (or fault)1: Run from the first step "multi-stepfrequency 0"2: Run from the eighth step"multi-step frequency 8"3: Run from the fifteenth step"multi-step frequency 15"Hundreds place: power lossmemory0: Memory disabled on power lossThousands place: unit of simplePLCRunning time of step 00.0\sim 6000.0s(h)Running time of step 10.0\sim 6000.0s(h)Running time of step 30.0\sim 6000.0s(h)Running time of step 40.0\sim 6000.0s(h)Running time of step 50.0\sim 6000.0s(h)Running time of step 60.0\sim 6000.0s(h)Running time of step 70.0\sim 6000.0s(h)Running time of step 80.0\sim 6000.0s(h)Running time of step 10.0\sim 6000.0s(h)Running time of step 1<$

	veitei		
time of simple PLC reference 3			
Acceleration/deceleration time of simple PLC reference 4	0~3	0	Δ
Acceleration/deceleration time of simple PLC reference 5	0~3	0	Δ
time of simple PLC reference 6	0~3	0	Δ
time of simple PLC reference 7	0~3	0	Δ
Acceleration/deceleration time of simple PLC reference 8	0~3	0	Δ
Acceleration/deceleration time of simple PLC reference 9	0~3	0	Δ
Acceleration/deceleration time of simple PLC reference 10	0~3	0	Δ
timeof simple PLC reference 11	0~3	0	Δ
Acceleration/deceleration time of simple PLC reference 12	0~3	0	Δ
Acceleration/deceleration time of simple PLC reference 13	0~3	0	Δ
Acceleration/deceleration time of simple PLC reference 14	0~3	0	Δ
Acceleration/deceleration time of simple PLC reference 15	0~3	0	Δ
UP/DOWN function selection of Multi- reference	Unit's digit: Action selection when power off 0:Zero clearing when power off 1:Hold when power off Ten's digit: select if it can be reduced to negative 0:Disable 1:Enable	- 00	×
UP/DOWN speed of Multi-reference	0.0∼100.0% (0.0%Invalid)	0.0%	\triangle
	•		
PID setting	0: F13.01 digital setting 1:keypad potentiometer 2: Al1 3: Communication 4: Multi-Reference 5: DI7/HI pulse input 6: Al2	0	×
	time of simple PLC reference 3 Acceleration/deceleration time of simple PLC reference 4 Acceleration/deceleration time of simple PLC reference 5 Acceleration/deceleration time of simple PLC reference 6 Acceleration/deceleration time of simple PLC reference 7 Acceleration/deceleration time of simple PLC reference 8 Acceleration/deceleration time of simple PLC reference 9 Acceleration/deceleration time of simple PLC reference 10 Acceleration/deceleration time of simple PLC reference 11 Acceleration/deceleration time of simple PLC reference 12 Acceleration/deceleration time of simple PLC reference 13 Acceleration/deceleration time of simple PLC reference 14 Acceleration/deceleration time of simple PLC reference 15 UP/DOWN function selection of Multi- reference UP/DOWN speed of Multi-reference 13 Process PID	reference 3 0~3 Acceleration/deceleration 0~3 time of simple PLC 0~3 reference 5 0~3 Acceleration/deceleration 0~3 time of simple PLC 0~3 reference 6 0~3 Acceleration/deceleration 0~3 time of simple PLC 0~3 reference 6 0~3 Acceleration/deceleration 0~3 time of simple PLC 0~3 reference 8 0~3 Acceleration/deceleration 0~3 time of simple PLC 0~3 reference 9 0~3 Acceleration/deceleration 0~3 time of simple PLC 0~3 reference 10 0~3 Acceleration/deceleration 0~3 time of simple PLC 0~3 reference 12 0~3 Acceleration/deceleration 0~3 treference 12 0~3 Acceleration/deceleration 0~3 treference 12 0~3 Acceleration/deceleration 0~3 treference 13 0~3 <t< td=""><td>time of simple PLC 0~3 0 Acceleration/deceleration 0~3 0 reference 6 0~3 0 Acceleration/deceleration 0~3 0 reference 7 0~3 0 Acceleration/deceleration 0~3 0 reference 8 0~3 0 Acceleration/deceleration 0~3 0 reference 8 0~3 0 Acceleration/deceleration 0~3 0 reference 10 0~3 0 Acceleration/deceleration 0~3 0 reference 11 0~3 0 Acceleration/deceleration 0~3 0 reference 12 0~3 0 Acceleration/deceleration 0~3 0 reference 13 0~3 0 reference 14</td></t<>	time of simple PLC 0~3 0 Acceleration/deceleration 0~3 0 reference 6 0~3 0 Acceleration/deceleration 0~3 0 reference 7 0~3 0 Acceleration/deceleration 0~3 0 reference 8 0~3 0 Acceleration/deceleration 0~3 0 reference 8 0~3 0 Acceleration/deceleration 0~3 0 reference 10 0~3 0 Acceleration/deceleration 0~3 0 reference 11 0~3 0 Acceleration/deceleration 0~3 0 reference 12 0~3 0 Acceleration/deceleration 0~3 0 reference 13 0~3 0 reference 14

PV500&PV150A Series Solar Pumping Inverter

		PV500&PV150A Series So	olar Pumping	j Inve
F13.01	PID digital setting	0.0~100.0%	50.0%	\triangle
		0: Al1		
		1: AI2		
		2: Communication		
		3: AI1+AI2		
F13.02	PID feedback	4: AI1-AI2	0	×
		5: Max{Al1, Al2}		
		6: Min{Al1, Al2}		
		7: DI7/HI pulse input		
		8: AI3		
F13.03	PID setting feedback range	0.0~6000.0	100.0	\bigtriangleup
F13.04	PID action direction	0: Forward action	0	×
1 10.04		1: Reverse action	U	Ŷ
F13.05	Filtering time of PID setting	0.000~10.000s	0.000s	\bigtriangleup
F13.06	Filtering time of PID feedback	0.000~10.000s	0.000s	\bigtriangleup
F13.07	Filtering time of PID output	0.000~10.000s	0.000s	Δ
F13.08	Proportional gain Kp1	0.0~100.0	1.0	\triangle
F13.09	Integration time Ti1	0.01~10.00s	0.10s	
F13.10	Differential time Td1	0.000~10.000s	0.000s	
F13.11	Proportional gain Kp2	0.0~100.0	1.0	
F13.12	Integration time Ti2	0.01~10.00s	0.10s	Δ
F13.12	Differential time Td2		0.10s	
F13.13	Dillerential time 102	0.000~10.000s 0: No switch, determined by	0.0008	
F13.14	PID parameter switch	parameters Kp1, Ti1 and Td1 1: Auto switch on the basis of input	0	×
		offset 2: Switched by terminal		
F13.15	PID parameter switchover deviation 1	0.0~100.0%	20.0%	×
F13.16	PID parameter switchover deviation 2	0.0~100.0%	80.0%	×
F13.17	PID offset limit	0.0~100.0%	0.0%	×
		Unit's digit (Whether to stop integral operation when the output reaches the limit)		
F13.18	PID integral property	0: Continue integral operation 1: Stop integral operation Table disit (Integral operation)	00	×
		Ten's digit (Integral separated) 0: Invalid 1: Valid	-	
F13.19	PID differential limit	0.0~100.0%	0.5%	×
F13.20	PID initial value	0.0~100.0%	0.0%	×
F13.21	Holding time of PID	0.0~6000.0s	0.0s	
1-13.21	initial value	PID output frequency lower limit \sim	0.05	×
F13.22	PID output frequency upper limit	100.0% (100.0% corresponds to	100.0%	×
		maximum frequency)		
F13.23	PID output frequency lower limit	-100.0%~PID output frequency lower limit	0.0%	×
	Down limit of			1

V500&PV1	150A Series Solar Pumping Inv			
		0.0%: Not judging feedback loss		
F13.25	Detection time for down limit of PID feedback loss	0.0~30.0s	1.0s	×
F13.26	PID operation selection	Unit's digit: PID operation selection when stop 0:Do not operate when stop 1:Operate when stop Ten's digit: output is limited by output frequency 0:No limited 1:limited Hundred's digit: UP/DOWN digital given of PID 0:Zero clearing when power off 1:Hold when power off Thousand's place: PID feedback loss detection mode 0:No detection when stop 1:Do detection when stop 1:Do detection when stop Ten thousand's place: Action when PID feedback loss 0:Report fault 1:Ramp to stop	00000	×
F13.27	UP/DWON speed of PID digital given	$0.0{\sim}100.0\%$ (0.0% Invalid)	0.0%	\bigtriangleup
F13.28	Up limit of PID feedback loss	0.1~100.0% 0.0%: Not judging feedback loss	100.0%	×
F13.29	Detection time for up limit of PID feedback loss	0.0~30.0s	1.0s	×
F13.30	PID upper limit source selection	0:F13.22 1:F13.22* keyboard potentiometer 2:F13.22*Al1 3:F13.22*Al2 4:F13.22 * HI (pulse input) 5:F13.22*Al3	0	×
F13.31	PID lower limit source selection	0:F13.23 1:F13.23* keyboard potentiometer 2:F13.23*Al1 3:F13.23*Al2 4:F13.23 * HI (pulse input) 5:F13.23*Al3	0	×
Group F	14: Swing Frequency, Fixed	Length , Wakeup and Count	1	_
F14.00	Swing frequency setting mode	0: Relative to the setting frequency 1: Relative to the maximum frequency	0	×
F14.01	Swing frequency amplitude	0.0~100.0%	0.0%	
F14.02	Jump frequency amplitude	0.0~50.0%	0.0%	\bigtriangleup
F44.00	Rising Time of Swing	0.0~6000.0s	5.0s	Δ
F14.03	frequency			
F14.03 F14.04	Dropping Time of Swing frequency	0.0~6000.0s	5.0s	Δ

		PV500&PV150A Series So	plar Pumping	Jinve
F14.06	Number of pulses per meter	0.1~6553.5	100.0	×
F14.07	Command when the length attained	Unit's place: stop when the length reaches 0: Not stop 1: Stop Ten's place: length calculation method 0: pulse by pulse 1: Reference maximum frequency 2: Refer to Ai1 channel 3: Refer to Ai2 channel 4: Refer to Ai3 channel	00	×
F14.08	Set count value	1~65535	1000	×
F14.09	Designated count value	1~65535	1000	×
F14.10	Wakeup frequency	Dormant frequency (F14.12) \sim Fmax	0.00Hz	Δ
F14.11	Wakeup delay time	0.0~6000.0s	0.0s	\triangle
F14.12	Dormant frequency	0.00 \sim Wakeup frequency	0.00Hz	\triangle
F14.13	Dormant delay time	0.0~6000.0s	0.0s	\triangle
F14.14	Wake up mode selection	0: Frequency 1: Pressure	0	×
F14.15	Dormancy mode selection	0: Frequency 1: Pressure Unit's place: pressure feedback	0	×
F14.16	Voltage feedback source	channel 0: Al1 1: Al2 2: DI7/HI pulse input 3: Al3 Ten's place: Dormancy mode 0:Dormancy on high pressure and wake up on low pressure 1:Dormancy on low pressure and wake up on high pressure	. 00	×
F14.17	Wake up pressure	0.0%~Dormancy pressure	10.0%	\triangle
F14.18	Dormancy pressure	Wake up pressure~100.0%	50.0%	\triangle
Group F	15: Communication Parame	ters		
F15.00	Baud rate	0: 4800bps 1: 9600bps 2: 19200bps 3: 38400bps 4: 57600bps 5: 115200bps	1	×
F15.01	Data format	No check, data format (1-8-N-2) for RTU 1: Even parity check, data format (1-8-E-1) for RTU 2: Odd Parity check, data format (1-8-O-1) for RTU 3: No check, data format(1-8-N-1) for RTU	0	×
F15.02	Local address	1~247 0: Broadcast address	1	×
F15.03	Communication timeout	0.0~60.0s	0.0s	×
F15.04	Response time delay	0~200ms	1ms	×
F15.05	Master-slave	0:The inverter is the slave	0	×

PV500&PV150A Series Solar Pumping Inverter

V500&PV1	150A Series Solar Pumping Ir	nverter		
	Communication Mode	1:The inverter is the master		
	The Master	0: Set frequency		
F15.06	Communication	1: Current running frequency	0	×
	Sending Data			
F15.07	Message return when	0: No return	1	
1 10.07	communication error	1: Return	1	
F15.08	U group return value	0: Positive and negative	0	\triangle
	° .	1: Absolute value	U	
Group F	16 Keys and Display of Key			
		0: No function		
		1: Jog		
F16.00	MF.K key setting	2: Forward/reverse switchover	1	×
		3: Run command sources shifted		
		4: Jog reverse		
		Unit's digit: Function selection of		
		STOP/RESET key		
		0: stop function of STOP/RESET		
		key is valid only in keyboard		
		operation mode		
		1: Stop function of STOP/RES key		
		is valid in any operation mode		
F16.01	Keyboard operation	Ten's digit: Speed display (U00.05)	001	×
1 10.01	display	0: According to the actual speed	001	î
		1: Multiply frequency by speed	l	
		coefficient(F16.11)		
		Hundred's digit: Decimal places		
		0: No decimal places		
		1: One decimal places		
		2: Two decimal places		
		3: Three decimal places		
		0: Not locked		
		1: Full locked		
		2: Keys locked other than RUN,		
F16.02	Keys locked option	STOP/RST	0	×
		3: Keys locked other than		
		STOP/RST		
		4: Keys locked other than >>		
E40.00	LED displayed	0 \sim 99(correspond U00.00 \sim	_	
F16.03	parameters setting 1 on	U00.99)	0	\triangle
	running status	/		
E40.04	LED displayed	0 \sim 99(correspond U00.00 \sim	0	
F16.04	parameters setting 2 on	U00.99)	6	\bigtriangleup
	running status	,		_
F 40.05	LED displayed	0 \sim 99(correspond U00.00 \sim	0	
F16.05	parameters setting 3 on	U00.99)	3	\bigtriangleup
	running status	,		_
	LED displayed	0 \sim 99(correspond U00.00 \sim	2	
F16.06	parameters setting 4 on	U00.99)	2	\triangle
	running status	· · ·		-
E16.07	LED displayed	0 \sim 99(correspond U00.00 \sim	1	
F16.07	parameters setting 1 on	U00.99)	1	\bigtriangleup
	stop status	/		_
F40.00	LED displayed	0 \sim 99(correspond U00.00 \sim		
F16.08	parameters setting 2 on	U00.99)	6	\triangle
	stop status	,		
E16.00	LED displayed	0 \sim 99(correspond U00.00 \sim	15	\triangle
F16.09	parameters setting 3 on	U00.99)		

		PV500&PV150A Series	s Solar Pumping	Inve
	stop status			
F16.10	LED displayed parameters setting 4 on stop status	0 \sim 99(correspond U00.00 \sim U00.99)	16	Δ
F16.11	Speed display coefficient	0.00~100.00	1.00	\triangle
F16.12	Power display coefficient	0.0~300.0%	100.0%	
F16.13	Display error between U00.00 and U00.01	0.00Hz~5.00Hz	0.10Hz	
Group F	17 User-defined Display Par	rameters		
F17.00	User-defined Display Parameter 0	00.00~49.99	00.03	
F17.01	User-defined Display Parameter 1	00.00~49.99	01.01	
F17.02	User-defined Display Parameter 2	00.00~49.99	01.02	\triangle
F17.03	User-defined Display Parameter 3	00.00~49.99	01.08	
F17.04	User-defined Display Parameter 4	00.00~49.99	01.09	
F17.05	User-defined Display Parameter 5	00.00~49.99	02.00	
F17.06	User-defined Display Parameter 6	00.00~49.99	02.01	
F17.07	User-defined Display Parameter 7	00.00~49.99	02.12	
F17.08	User-defined Display Parameter 8	00.00~49.99	03.00	
F17.09	User-defined Display Parameter 9	00.00~49.99	03.01	\triangle
F17.10	User-defined Display Parameter 10	00.00~49.99	04.00	
F17.11	User-defined Display Parameter 11	00.00~49.99	04.01	
F17.12	User-defined Display Parameter 12	00.00~49.99	04.02	
F17.13	User-defined Display Parameter 13	00.00~49.99	04.03	
F17.14	User-defined Display Parameter 14	00.00~49.99	05.02	
F17.15	User-defined Display Parameter 15	00.00~49.99	08.01	
F17.16	User-defined Display Parameter 16	00.00~49.99	08.02	
F17.17	User-defined Display Parameter 17	00.00~49.99	08.03	
F17.18	User-defined Display Parameter 18	00.00~49.99	08.04	
F17.19	User-defined Display Parameter 19	00.00~49.99	08.05	
F17.20	User-defined Display Parameter 20	00.00~49.99	08.30	
F17.21	User-defined Display Parameter 21	00.00~49.99	11.10	
F17.22	User-defined Display Parameter 22	00.00~49.99	13.00	
F17.23	User-defined Display Parameter 23	00.00~49.99	13.01	\triangle

V500&PV1	50A Series Solar Pumping Ir	iverter		
F17.24	User-defined Display Parameter 24	00.00~49.99	13.02	Δ
F17.25	User-defined Display Parameter 25	00.00~49.99	13.08	Δ
F17.26	User-defined Display Parameter 26	00.00~49.99	13.09	Δ
F17.27	User-defined Display Parameter 27	00.00~49.99	00.00	\bigtriangleup
F17.28	User-defined Display Parameter 28	00.00~49.99	00.00	\bigtriangleup
F17.29	User-defined Display Parameter 29	00.00~49.99	00.00	\bigtriangleup
F22Grou	p:Virtual IO			
F22.00	Function selection of virtual VDI1 terminal	The same as function code F04.00	0	\times
F22.01	Function selection of virtual VDI2 terminal	The same as function code F04.00	0	×
F22.02	Function selection of virtual VDI3 terminal	The same as function code F04.00	0	\times
F22.03	Function selection of virtual VDI4 terminal	The same as function code F04.00	0	×
F22.04	Function selection of virtual VDI5 terminal	The same as function code F04.00	0	×
F22.05	Valid status setting mode of virtual VDI terminals	(VDI5、VDI4、VDI3、VDI2、VDI1) 0:Validity of VDI depends on virual VDOx's status 1:Validity of VDI set by function code F22.06	00000	×
F22.06	Settings of virtual VDI terminal status	(VDI5、VDI4、VDI3、VDI2、VDI1) 0: Invalid 1: Valid	00000	\bigtriangleup
F22.07	Function selection of virtual VDO1 terminals output	0 : Internal short circuited to physics DIx Other: The same as function code F05.00	0	\bigtriangleup
F22.08	Function selection of virtual VDO2 terminals output	0 : Internal short circuited to physics DIx Other: The same as function code F05.00	0	\bigtriangleup
F22.09	Function selection of virtual VDO3 terminals output	0 : Internal short circuited to physics DIx Other: The same as function code F05.00	0	Δ
F22.10	Function selection of virtual VDO4 terminals output	0 : Internal short circuited to physics DIx Other: The same as function code F05.00	0	Δ
F22.11	Function selection of virtual VDO5 terminals output	0 : Internal short circuited to physics DIx Other: The same as function code F05.00	0	Δ
F22.12	Virtual VDO1 output delay time	0.0s~6000.0s	0.0s	\triangle
F22.13	Virtual VDO2 output delay time	0.0s~6000.0s	0.0s	\triangle
F22.14	Virtual VDO3 output delay time	0.0s~6000.0s	0.0s	\triangle

		T VOODAT V TOUR DETIES DO	an i amping	
F22.15	Virtual VDO4 output delay time	0.0s~6000.0s	0.0s	\triangle
F22.16	Virtual VDO5 output delay time	0.0s~6000.0s	0.0s	\triangle
	VDO output terminal	VD05、VD04、VD03、VD02、VD01		
F22.17	positive and negative	0: Positive logic	00000	\triangle
	logic	1: Negtive logic		
U00 Grou	up: Status Monitoring		1	
U00.00	Output Frequency	0.00~Fup	0.00Hz	\odot
U00.01	Setting Frequency	0.00~Fmax	0.00Hz	\odot
U00.02	Actual value of output voltage	0~660V	0.0V	0
U00.03	Actual value of output current	0.0~3000.0A	0.0A	\odot
U00.04	Output Power	-3000.0~3000.0kW	0.0kW	\odot
U00.05	Output Rotation-rate	0~60000rpm	0rpm	\odot
U00.06	DC Bus Voltage	0~1200V	0V	\odot
U00.07	Synchronization Frequency	0.00~Fup	0.00Hz	\odot
U00.08	PLC Stage	1~15	1	\odot
U00.09	Program Running Time	0.0~6000.0s(h)	0.0s(h)	0
U00.10	PID Given	0~60000	0	Ō
U00.11	PID Arithmetic Feedback	0~60000	0	Ō
U00.12	DI1~DI5 Input Status	DI5 DI4 DI3 DI2 DI1	00000	Ō
U00.13	DI6~DI7 Input Status	DI7 DI6	00	0
U00.14	Digital Output Status	R2R1 Y2 Y1	0000	0
U00.15	Al1 Input	0.0~100.0%	0.0%	0
U00.15	Al2 Input	0.0~100.0%	0.0%	0
U00.17	Al3 Input	-100.0~100.0%	0.0%	0
U00.18	Keyboard Potentiometer Input	0.0~100.0%	0.0%	0
U00.19	HI Pulse Input Frequency	0.00~100.00kHz	0.00kHz	0
U00.20	A01 Output	0.0~100.0%	0.0%	0
U00.20	A01 Output A02 Output	0.0~100.0%	0.0%	0
U00.22	HO Pulse Output Frequency	0.00~100.00kHz	0.00kHz	0
U00.23	Temperature of Inverter Module	-40.0℃~120.0℃	0.0 ℃	\odot
U00.24	The Power-on Time	0~65535min	0min	\odot
U00.25	The Running Time	0~6553.5min	0.0min	Ō
U00.26	Cumulative Power-on Time	0~65535h	Oh	0
U00.27	Cumulative Running Time	0∼65535h	0h	\odot
U00.28	Actual Count Value	0~65535	0	$\overline{\odot}$
U00.29	Actual Length Value	0~65535m	0m	0
U00.30	Line Speed	0~65535m/min	0m/Min	\odot
U00.31	Output Torque	0.0~300.0%	0.0%	0
U00.35	Power consumption	0~65535KWh	0	0
U00.36	VDI1~VDI5 input status	VDI5 VDI4 VDI3 VDI2 VDI1	00000	0
U00.37	VDO1~VDO5output status	VD05 VD04 VD03 VD02 VD01	00000	0
U00.38	High speed pulse X7 or the line number of	0~65535	0	\odot

500&PV1	50A Series Solar Pumping In	verter I		
U01 Grou	extension card monitoring up: Failure Record			<u> </u>
U01.00	Current Fault Category	Err00~Err41	Err00	\odot
U01.01	Output frequency of the current fault	0.00~Fup	0.00Hz	0
U01.02	Output current of the current fault	0.0~3000.0A	0.0A	\odot
U01.03	c of the current fault	0~1200V	0V	\odot
U01.04	Cumulative runtime of the current fault	0∼65535h	0h	\odot
U01.05	Former one fault category	Like the latest one fault record	Err00	\odot
U01.06	Output frequency of the former one fault	0.00~Fup	0.00Hz	\odot
U01.07	Output current of the former one fault	0.0~3000.0A	0.0A	\odot
U01.08	Bus Voltage of the former one fault Cumulative runtime of the	0~1200V	0V	\odot
U01.09	former one fault	0~65535h	Oh	\odot
U01.10	categories Output frequency of the	Like the latest one fault record	Err00	\odot
U01.11	former two faults Output current of the	0.00~Fup	0.00Hz	\odot
U01.12	former two faults Bus Voltage of the former	0.0~3000.0A	0.0A	\odot
U01.13	two faults Cumulative runtime of the	0~1200V	0V	\odot
U01.14	former two faults Previous 3 categories of	0~65535h	0h	0
U01.15	faults Previous 4 categories of	The same with U01.00	Err00	0
U01.16	faults Previous 5 categories of	The same with U01.00	Err00	0
U01.17	faults Previous 6 categories of	The same with U01.00	Err00	0
U01.18	faults Previous 7 categories of	The same with U01.00	Err00	0
U01.19	faults Previous 8 categories of	The same with U01.00	Err00	0
U01.20	faults Previous 9 categories of	The same with U01.00	Err00	0
U01.21	faults Previous 10 categories of	The same with U01.00	Err00	0
U01.22	faults Previous 11 categories of	The same with U01.00	Err00	0
U01.23	faults Previous 12 categories of	The same with U01.00	Err00	0
U01.24	faults Previous 13 categories of	The same with U01.00	Err00	0
U01.25	faults	The same with U01.00	Err00	\odot
	up: PV Pump Special Set	0:Null		1
H00.00	Pump Machine Control Selection of Inverter	1:Valid	1	×
H00.01	Power	0:Mains 1:Solar Panel	1	×
H00.02	Vmpp Selection of	0:CVT - 58 -	3	×

		PV500&PV150A Series So	plar Pumping	g Inve
	Voltage Given Mode	(Constant Voltage appr Given)		
		1:Tracking of Max Power Point (MPPT)	-	
		2:Automatic MPPT	-	
		3:Fast MPPT		
		4:Quick start MPPT		
H00.03	Vmpp voltage CVT setting	0~750V	540V	\triangle
H00.04	Mini voltage reference of MPPT	0∼Max Voltage	500V	×
H00.05	Max voltage reference of MPPT	Max Voltage \sim 750V	600V	×
H00.06	PID Filter Time Given	0.000~10.000s	0.000s	\triangle
H00.07	PID Filter Time Feedback	0.000~10.000s	0.000s	\triangle
H00.08	PID Filter Time Output	0.000~10.000s	0.000s	
H00.09	Ratio Gain Kp1	0.00~100.00	0.10	
	Points Time KI			
H00.10	Points Time Ki	0.00~100.00	0.10	
H00.11	PID Upper Limit of Output Frequency	PID Lower Limit of Output Frequency~100.0% (100.0% corresponds to the max frequency)	100.0%	×
H00.12	PID Lower Limit of Output Frequency	0.0%~PID Upper Limit of Output Frequency	20.0%	×
H00.13	Dormant Delay Time of Weak light Pre-warning	0.0~6000.0s	600.0s	Δ
H00.14	Wake-up Delay Time of Weak Light	0.0~6000.0s	100.0s	Δ
H00.15	Feedback Channel Selection of Reservoir Water Level	0:Null 1:Al1 2:Al2 3:Al3	0	×
H00.16	Clean up the delay time of full-water pre-warning	0~10000s	600s	
H00.17	Threshold of reservoir water level	0.0~100.0	25.0%	Δ
H00.18	Dormant Delay Time of Overtank Pre-warning	0~10000s	60s	Δ
H00.19	Detection of reservoir hydraulic probe	0.0~100.0	100.0%	Δ
H00.20	Pre-warning delay time of pump under-load	0.0~1000.0s	60.0s	Δ
H00.21	Pre-warning current level of pump under-load	0.0~100.0% 0.0:Null	0.0%	Δ
H00.22	Reset delay time of pump under-load	0.0~1000.0s	60.0s	Δ
H00.23	Threshold of lag-frequency	0.00~200.00Hz	0.30Hz	Δ
H00.24	Water level direction detection	0:Positive direction, higher detection value higher water level 1:Negative position, higher detection value lower water level	1	×
H00.25	Weak light voltage	80V~MPPT minimum voltage(220V inverter) 230V~MPPT minimum voltage(380V inverter)	80V 230V	×
H00.26	Frequency given mode	0: Maximum frequency 1: Master frequency given mode	0	×

PV500&PV150A Series Solar Pumping Inverter

V JUUAF V	vsouwevisua Series Solar Pumping inverter					
H00.27	Power automatic switch function	0:disable 1:Enable	0	×		
H00.28	Time of automatic switch to solar power	1~600Min	60Min	\triangle		
H00.29	Automatic switch delay	0.1~10.0s	3.0s	\triangle		
H00.30	Current power source in automatic switch function	0: Grid power 1: Solar power	0	\odot		
H00.31	Pump rated flow Q_N	0.0~1000.0 m3/h	6.0 m3/h	\triangle		
H00.32	Pump rated head H_N	0.0~500.0m	24m	\triangle		
H00.33	Pump cumulative flow zero clearing	0: Invalid 1: Valid	0	Δ		
H00.34	Pump current flow	$Q = Q_N * f / f_N (m3/h)$	0.0 m3/h	\odot		
H00.35	Pump current head	$H = 0.9 H_N * (f / f_N)^2$ (m)	0.0 m	\odot		
H00.36	Pump cumulative flow	Unit: m3	0 m3	\odot		
H00.38	Start Freq for Quick start MPPT Mode	0.00~50.00Hz	20.00Hz	×		

3.2 H00 Group: Detailed Explanation of Function Code

	Pump Machine Control	0:Null	1	
H00.00	Pump Machine Control	1:Valid		×
0.Null				

For standard model

1:Valid

For PV pumps special inverter, H00 Group: Invalid

	1100.04	Selection of Inverter Power	0:Mains		
1	H00.01	Selection of Inverter Fower	1:Solar Panel	1	×

0:Mains

Inverter power supply through the grid, frequency given refer to group of F01, HOO.02 ${\sim}$ H00.12 invalid.

1:PV Panels

Inverter power supply through solar panels, frequency given mainly through tracking and adjusting the max power-point PI of solar panels to get. For more details, please refer to H00.02 \sim H00.12.

H00.02	Vmpp Selection of Voltage Given Mode	0:CVT (Constant Voltage appr Given) 1:Tracking of Max Power Point (MPPT) 2:Automatic MPPT 3:Fast MPPT 4:Quick start MPPT	2	×
--------	---	--	---	---

0:CVT (Constant Voltage appr Given)

Adopt voltage given mode; reference voltage is a fixed value, given by H00.03.

1:Max power point tracking (MPPT)

Using max power point tracking the given reference voltage, the reference voltage will not stop changing until the system stable, the maximum power point of this searching mode is limited by range of H00.04 and H00.05

2:Automatic MPPT

System track the maximum power point automatically, adaptive to different solar panel, can track and get maximum power point rapidly.

No matter which reference voltage mode adopted, when bus voltage higher than reference voltage, the target frequency will change to upper limit of PI output frequency; when bus voltage lower than reference voltage, target frequency will change to lower limit of PI output frequency.

3:Fast MPPT

System fast track the maximum power point automatically, adaptive to different solar panel, can track and get maximum power point rapidly.

No matter which reference voltage mode adopted, when bus voltage higher than reference voltage, the target frequency will change to upper limit of PI output frequency; when bus voltage lower than reference voltage, target frequency will change to lower limit of PI output frequency.

4:Quick start MPPT

This mode is based on mode 3(Fast MPPT), in addition to, adding quick start frequency(H00.38).

	H00.03	Vmpp voltage CVT setting	0~750V	540V	\triangle
--	--------	--------------------------	--------	------	-------------

When H00.02 is zero, reference voltage will be given by this function code.

H00.04	MPPT mini voltage reference	0∼Max Voltage	500V	×
H00.05	MPPT max voltage reference	Max Voltage \sim 750V	600V	×

When H00.03 is 1, MPPT voltage will track within H00.04~H00.05, H00.05 must be larger than H00.04, the smaller the difference between them, the narrower the tracking range, tracking will be faster. But the voltage point of max power must fall in this range.

H00.06	PID Given Filter Time	0.000~10.000s	0.000s	\triangle
H00.07	PID Response Filter Time	0.000~10.000s	0.000s	\triangle
H00.08	PID Output Filter Time	0.000~10.000s	0.000s	\triangle
H00.09	Ratio Gain Kp1	0.00~100.00	0.10	\triangle
H00.10	Points Time KI	0.00~100.00	0.10	\triangle
H00.11	PID Upper limit of output frequency	PID Lower limit of output frequency~100.0% (100.0% corresponds to the max frequency)	100.0%	×
H00.12	PID Lower limit of output frequency	0.0%~PID Upper limit of output frequency	20.0%	×

Refer to F13 group of PID function description in FR200 user manual.

H00.13	Delay time of weak light pre-warning sleep	0.0~6000.0s	600.0s	\triangle
H00.14	Delay time of weak light wake-up	0.0~6000.0s	100.0s	Δ

When the output frequency less than or equal with the lower limit of PI output frequency (H00.12), delaying timing begins, continuing this state until delay time of weak light pre-warning (H00.13) arrives, weak-light pre-warning reported (Arn33), and start dormant.

In weak light pre-warning, when output frequency larger than lower limit of PI output frequency, delaying timing begins, and continue this status until arrival delay time (H00.14) of wake-up at weak light, clean the weak light pre-warning, re-enter the running status.

Figure 3-1 Weak light dormancy & wake up

		0:Null			
H00.15	Feedback channel selection of	1:AI1	0	~	
HUU.15	reservoir water level	2:AI2	0	×	l
		3:AI3			

0:Null

Control of water level is invalid.

1:AI1

Al1 for analog signal source of water-level control

2:AI2

Al2 for analog signal source of water-level control

3:AI3

Al3 for analog signal source of water-level control

H00.16	Clean up the delay time of overtank pre-warning	0~10000s	600s	Δ
H00.17	Reservoir full of water control	0.0~100.0	25.0%	\bigtriangleup
H00.18	Dormancy delay time of reservoir full of water pre-warning	0~10000s	60s	Δ

When the detected water level control analog signal less than water level threshold (H00.17), and continue this status over the delay time of H00.18, reporting the pre-warning of water-full (Arn34), and dormancy.

In water-full pre-warning, when the detected water level control analog signal larger than H00.17, delay timer begins, and continue this status over the delay time of H00.16, clear the full-water pre-warning, recover the normal operation.

H00.19	ction of reservoir aulic probe	0.0~100.0	100.0%	Δ
--------	-----------------------------------	-----------	--------	---

0.0% means Null.

When not 0.0%, when the detected water level control analog signal larger than H00.19 hydraulic probe damaged point, hydraulic probe fault (Err32) will be reported directly, and stopped.

H00.20	Pre-warning delay time of pump under-load	0.0~1000.0s	60.0s	Δ
H00.21	Pre-warning current level of pump under-load	0.0~100.0% 0.0:Null	0.0%	Δ
H00.22	Reset delay time of pump under-load	0.0~1000.0s	60.0s	Δ

(H00.21) 0.0%: invalid. When not 0.0%, decided by H00.21 parameter setting, 100% correspondence to ratted current of motor.

When absolute value of the difference between target frequency and slop frequency continues less than or equal with H00.23 lag frequency threshold, if the current value continues less than H00.21 set value, over the H00.20 pump under-load delay time, reporting under-load pre-warning(Arn25). In under-load pre-warning, delay H00.22 under-load reset time, under-load pre-warning restoration.

H00.23	Lag frequency threshold	0.00~200.00Hz	0.30Hz ∠	7

Use for adjusting the condition of under-load operation. When absolute value of the difference between target frequency and slop frequency continues less than or equal with lag frequency threshold, current comparison will be required.

H00.24	Water level direction	0:Positive direction, higher detection value higher water level	1	×
1100.24	detection	1:Negative position, higher detection value lower water level	I	^

To set the relationship between hydraulic probe detected signal and water level

0: Positive direction, higher detection value higher water level

1: Negative position, higher detection value lower water level

	H00.25	Weak light voltage	230V \sim MPPT minimum voltage	230V	×	
1	Ear invotors with 280V/ range: 250V/~ MPPT minimum voltage Default Value: 220V/					

For inverters with 380V, range: 250V~MPPT minimum voltage Default Value:230V

For inverters with 220V, range: $120V \sim MPPT$ minimum voltage Default Value:80V When bus voltage is lower than the value of weak light voltage, inverter will soon entry the statue of weak light.

H00.26 Frequency given mode	0: Maximum frequency 1: Master frequency given mode	0	×
-----------------------------	--	---	---

0:Maximum frequency

Given frequency is the maximum frequency adjusted by MPPT function

1:Master frequency given mode

In frequency range adjusted by MPPT function, given frequency is adjusted by F01.01

H00.27	Power automatic switch function	0:disable 1:Enable	0	×
H00.28	Time of automatic switch to solar power	1~600Min	60Min	Δ
H00.29	Automatic switch delay	0.1~10.0s	3.0s	\triangle
H00.30	Current power source in automatic switch function	0: Grid power 1: Solar power	0	\odot

When H00.27=1 power automatic switch function is enable, grid power and solar power will be switched automatically in system. When system works with grid power, MPPT function is invalid, speed adjusted by frequency given mode, when running time is over setting time of H00.28, system will stop and switch to solar power then restart. When system works with solar power, MPPT function is valid, when system is under weak light, system will stop and switch to grid power than restart. In every automatic switch, system will stop during the time setting by H00.29 for the switch.

H00.30 shows current power source in automatic switch, wiring as below:

Figure 3-2 Automatic switch between grid and solar power wiring

H00.31	Pump rated flow $Q_{\scriptscriptstyle N}$	0.0~1000.0 m3/h	6.0 m3/h	Δ
H00.32	Pump rated head H_N	0.0~500.0m	24m	Δ
H00.33	Pump cumulative flow zero clearing	0: Invalid 1: Valid	0	Δ
H00.34	Pump current flow	$Q = Q_N * f / f_N (m3/h)$	0.0 m3/h	\odot
H00.35	Pump current head	$H = 0.9H_N * (f / f_N)^2$ (m)	0.0 m	\odot
H00.36	Pump cumulative flow	Unit: m3	0 m3	\odot

This group parameter is used to estimate the pump flow and head during operation. To set pump rated flow (H00.31) and pump rated head (H00.32), inverter will automatically estimate the pump current flow and current head according to the operation state, and pump cumulative flow (H00.36) will be recorded. Parameter H00.33 is the function of pump cumulative flow zero clearing and recalculate.

H00.38 Start Freq for Quick start MPPT Mode	0.00~50.00Hz	20.00Hz	×	1
--	--------------	---------	---	---

This is valid only when H00.02=4(Quick start MPPT mode). Used to speed up starting.

Chapter 4 Troubleshooting and Countermeasures

PV150A & PV500 inverters supply many kinds of warning information and protection functions, when failure occurred, function of protection actives, inverters will stop output, fault relay contact of inverter active, and display the fault code on inverter operation panel. Before asking support, users can self-check according to this chapter tips, and analyze the fault reasons, get the solutions. If fault still can't be solved, please ask for service, contact with agents or directly to FRECON

Operator Panel Displays	Fault Name	Fault Reasons	Troubleshooting
Err01	Acceleration Over-current	 Inverter output circuit grounding or shorted Acceleration time is too short Manually boost the torque or V/F curve unsuitable Voltage is too low Start the rotating motor Shock load on acceleration Inverter selection is too small 	 Peripheral troubleshooting Prolong the acceleration time Adjust the V/F curve Or manually-torque-boost The voltage adjusted to a normal range Select start on rotational-speed tracking or waiting for motor stopped Cancel shock-load Select inverter with a larger power
Err02	Deceleration Over-current	 Inverter output circuit grounding or shorted Deceleration time is too short Voltage is too low Shock load on deceleration No installation of braking resistor 	 Peripheral troubleshooting Prolong the deceleration time The voltage adjusted to a normal range Cancel shock-load Install braking resistor
Err03	Constant-speed Over-current	 Inverter output circuit grounding or shorted Voltage is too low If there is shock-load during running Inverter selection is too small 	 Peripheral troubleshooting The voltage adjusted to a normal range Cancel shock-load Select inverter with a larger power
Err04	Acceleration Overvoltage	 Input voltage is high There is an external force during acceleration dragging the motor to work Acceleration time is too short No installation of braking resistor 	 The voltage adjusted to a normal range Cancel the external power or install braking resistor Prolong the acceleration time Install braking resistor
Err05	Deceleration Overvoltage	 Input voltage is high There is an external force during deceleration dragging the motor to work 	 The voltage adjusted to a normal range Cancel the external power or install braking

			JA Series Solar Pumping Inverte
		3、Deceleration time is too short	resistor 3、Prolong the deceleration
		4、No installation of braking	time
Err06	Constant-speed Overvoltage	resistor 1、Input voltage is too high 2、There is an external force during running dragging the motor to work	 4、Install braking resistor 1、The voltage adjusted to a normal range 2、Cancel the external power or install braking resistor
Err07	Bus Under voltage protection	 Momentary power failure The inverter input voltage Bus voltage abnormal Rectifier bridge and buffer resistance are abnormal Drive board abnormal Control panel abnormal 	 Reset Failure Adjust voltage to normal range Ask for technical support
Err08	Short circuit protection	 Inverter output circuit shorted Acceleration/ Deceleration time is too short Wirings between motor and inverter is too long Module Overheating Internal wirings of inverter loosened Main Board Abnormal Drive Board Abnormal Inverter Module Abnormal 	 Peripheral troubleshooting Prolong the acceleration/deceleration time Install the reactor or output-filter Check and confirm the air-channel unblocked, fans operation normal All cables plugged Ask for technical support Ask for technical support
Err09	Input Open-phase	 Power of three-phase-input is abnormal Drive board abnormal Lightning board abnormal Main board abnormal 	 Check and solve the problems in peripheral wirings Ask for technical support Ask for technical support Ask for technical support
Err10	Output Open-phase	Lead-wire from inverter to motor is abnormal Three-phase output of inverter is unbalanced during motor-running 3、Drive board abnormal 4、Inverter Module Abnormal	 Peripheral troubleshooting Check and confirm the motor three-phase winding to be normal Ask for technical support Ask for technical support
Err11	Motor Overload	 Motor-protection parameters F11.17 set incorrectly Load is too large or motor rocked rotor Inverter selection is too small 	 Setting the parameters correctly Lowering the load and check the conditions of motor and mechanical Select inverter with a larger power
Err12	Inverter Overload	1、Load is too large or motor rocked rotor 2、Inverter selection is too small	 Reduce load and check the conditions of motor and mechanical Select inverter with a

_

	50A Series Solar Purr		
			larger power
Err13	Fault protection of external input	1, Input the external fault signal by multi-function terminal	1、Reset to run
Err14	Overheat	 Ambient temperature is too high Air-channel blocked Fans damaged Module thermistors damaged Inverter module damaged 	 Lowering the ambient temperature Clean up the air-channel Replace the fans Replace the thermistors Replace the inverter module
Err15	Memory Failure	1、EEPROM Chips damage	1、Replace the Main Board
Err16	Cancel the self-identification	1、Press the button of STOP/RST during self-identification	1、Press STOP/RST for restoration
Err17	Self-identificatio n failure	 Motor and the inverter output terminals are not connected Motor connects to load Motor Failure 	 Check the wirings between inverter and motor Motor breaks away from load Check motor
Err18	485 Communication Timeout	Upper computer works abnormally 2、Communication cable is abnormal 3、F15 communication parameters set incorrectly	 Check the wirings of upper computer Check the communication cable Set the communication parameters correctly
Err19	PID feedback disconnection on running	1、PID feedback lower than the value set by F13.24	1、Check the PID feedback signal or set F13.24 to be a suitable value
Err20	The running time arrives	 Setting the function of running time arrives 	1、Refer to description of F05.14
Err21	Parameter Upload Error	 Copy card uninstalled or plugged unsuitable Parameters copy card abnormal Control board abnormal 	 Parameter copy card installed correctly Ask for technical support Ask for technical support
Err22	Parameter Download Error	 Copy card uninstalled or plugged unsuitable Parameters copy card abnormal Control board abnormal 	 Parameter copy card installed correctly Ask for technical support Ask for technical support
Err23	Braking Unit failure	 Braking wirings fault or braking tube damaged Value of external braking resister is too small 	 Check the brake unit, and replace the new brake tube Increasing the braking resistor
Err24	Disconnection Fault of temperature sensor	1、Temperature sensor failure or cable break	1、Ask for technical support
Err25	Inverter loss-load	1. Running current of inverter is less than F11.22	1. Confirm whether the load loss or parameters of F11.22. F11.23 conform to the actual running conditions.
Err26	With-wave	 Load is too large or motor 	 Reduce the load or

PV500&PV150A Series Solar Pumping Inverter

	PV500&PV150A Series Solar Pumping Inverte			
	current limit fault	rocked-rotor 2, Inverter selection is too small	check the conditions of motor or mechanical 2、Select the inverter with larger power	
Err27	Soft-start relay unclosed	 Grid voltage is too low Rectifier module failure 	 Check the grid voltage Ask for technical support 	
Err28	EEPROM Version Incompatible	 Parameter version of up/download module is inconsistent with the one of control panel 	1、Re-upload parameters to up/download modules	
Err29	Hardware detect Overcurrent	 Acceleration/Deceleration time is too short Motor Parameters is Inaccurate Hardware failure of Inverter 	 Prolong the acceleration/deceleration time Setting the correct motor parameter Ask for technical support 	
Err30	Hardware detect overvoltage	 Deceleration time is too short No installation of braking resistors Hardware failure of Inverter 	 Prolong the deceleration time Install the braking resistor Ask for technical support 	
Err32	Hydraulic Probe Failure	Hydraulic Probe Failure	Hydraulic Probe Changed	
Err40	The setting running time ends	Running time more than F00.25	1. Contact the dealer	
Err41	Overload warning	Overload	1、check F11.19 2、Select an AC drive of higher power class.	
A33	Pre-warning of Weak Light	Output frequency lower than or equal with lower limit of PI output frequency, and continues this status until arrives at delay time of weak light.	Check the lower limit of PI output frequency and weak-light delay the set value	
A34	Pre-warning of Full-water	Water-lever feedback lower than the set threshold, and continue to the delay time	Check the pre-warning point of water level	